Skip to main content
Log in

Evolution of Microcracks in Epitaxial CeO2 Thin Films on YSZ-Buffered Si

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Epitaxial buffer layers such as ceria (CeO2)/yttria-stabilized zirconia (YSZ) allow the direct integration of functional oxide single crystal thin films on silicon (Si). Microcracks in the buffer layer, often evolving from the large thermal tensile stress, are detrimental to the integration of high-quality complex oxide thin films on Si. In this study, we investigated the evolution of microcracks in sputter-grown epitaxial CeO2 layers by systematically varying the sputtering power and thickness of CeO2 thin films on YSZ single crystal (low thermal mismatch) and YSZ-buffered Si (high thermal mismatch) substrates. Using a plane stress model, we revealed that as the sputtering power increased, the epitaxial CeO2 thin films tended to be more compressively strained at the growth temperature. This could accommodate the tensile strain arising during cooling to room temperature, thereby suppressing the evolution of microcracks. Our result provides not only a method to suppress microcracks in the oxide heterostructure on Si, but also a tool to control their strain state, by controlling their growth parameters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang, J., Yoon, S.G.: Epitaxial 0.65 PbMg1/3Nb2/3O3–0.35 PbTiO3 (PMN–PT) thin films grown on LaNiO3/CeO2/YSZ buffered Si substrates. J. Alloy. Compd. 509(6), 3065–3069 (2011). https://doi.org/10.1016/j.jallcom.2010.11.200

    Article  CAS  Google Scholar 

  2. Kim, E.J., Kweon, S.H., Nahm, S., Sato, Y., Tan, G., Kanno, I.: High output performance of piezoelectric energy harvesters using epitaxial Pb(Zr, Ti)O3 thin film grown on Si substrate. Appl. Phys. Lett. 121(16), 161901 (2022). https://doi.org/10.1063/5.0105103

    Article  CAS  Google Scholar 

  3. Zhou, Z., Yoshida, S., Tanaka, S.: Epitaxial PMnN-PZT/Si MEMS ultrasonic rangefinder with 2 m range at 1 V drive. Sens. Actuators A Phys. 266, 352–360 (2017). https://doi.org/10.1016/j.sna.2017.09.058

    Article  CAS  Google Scholar 

  4. Dekkers, M., Nguyen, M.D., Steenwelle, R., te Riele, P.M., Blank, D.H., Rijnders, G.: Ferroelectric properties of epitaxial Pb(Zr, Ti)O3 thin films on silicon by control of crystal orientation. Appl. Phys. Lett. 95(1), 012902 (2009). https://doi.org/10.1063/1.3163057

    Article  CAS  Google Scholar 

  5. Wakiya, N., Yoshida, M., Kiguchi, T., Shinozaki, K., Mizutani, N.: RF-magnetron-sputtered heteroepitaxial YSZ and CeO2/YSZ/Si(001) thin films with improved capacitance–voltage characteristics. Thin Solid Films 411(2), 268–273 (2002). https://doi.org/10.1016/S0040-6090(02)00295-X

    Article  CAS  Google Scholar 

  6. Hata, T., Sasaki, K., Ichikawa, Y., Sasaki, K.: Yttria-stabilized zirconia (YSZ) heteroepitaxially grown on Si substrates by reactive sputtering. Vac. 59(2–3), 381–389 (2000). https://doi.org/10.1016/S0042-207X(00)00291-8

    Article  CAS  Google Scholar 

  7. Qu, P., Jin, P., Zhou, G., Wang, Z., Wu, J., Wang, Z.: Epitaxial growth of high-quality yttria-stabilized zirconia films with uniform thickness on silicon by the combination of PLD and RF sputtering. Surf. Coat. Technol. 456, 129267 (2023). https://doi.org/10.1016/j.surfcoat.2023.129267

    Article  CAS  Google Scholar 

  8. Pergolesi, D., Fronzi, M., Fabbri, E., Tebano, A., Traversa, E.: Growth mechanisms of ceria-and zirconia-based epitaxial thin films and hetero-structures grown by pulsed laser deposition. Mater. Renew. Sustain. Energy 2, 1–9 (2013). https://doi.org/10.1007/s40243-012-0006-6

    Article  Google Scholar 

  9. Pandey, S.K., Thakur, O.P., Raman, R., Goyal, A., Gupta, A.: Structural and optical properties of YSZ thin films grown by PLD technique. Appl. Surf. Sci. 257(15), 6833–6836 (2011). https://doi.org/10.1016/j.apsusc.2011.03.008

    Article  CAS  Google Scholar 

  10. Ning, R., Jung, S.Y., Choi, H., Lee, B.H., Kim, M.S., Choi, H.J., Lee, J.Y., Park, J.S., Jung, S.-J., Jang, H.W., Won, S.O., Chang, H.J., Jang, J.-S., Lee, K.H., Lee, B.C., Baek, S.H.: Selective area epitaxy of complex oxide heterostructures on Si by oxide hard mask lift-off. Electron. Mater. Lett. 19(2), 192–199 (2022). https://doi.org/10.1007/s13391-022-00386-0

    Article  CAS  Google Scholar 

  11. Wang, S.J., Ong, C.K., You, L.P., Xu, S.Y.: Epitaxial growth of yittria-stabilized zirconia oxide thin film on natively oxidized silicon wafer without an amorphous layer. Semicond. Sci. Technol. 15(8), 836 (2000). https://doi.org/10.1088/0268-1242/15/8/309

    Article  CAS  Google Scholar 

  12. Dubbink, D., Koster, G., Rijnders, G.: Growth mechanism of epitaxial YSZ on Si by pulsed laser deposition. Sci. Rep. 8(1), 5774 (2018). https://doi.org/10.1038/s41598-018-24025-7

    Article  CAS  Google Scholar 

  13. de Coux, P., Bachelet, R., Gatel, C., Warot-Fonrose, B., Fontcuberta, J., Sanchez, F.: Mechanisms of epitaxy and defects at the interface in ultrathin YSZ films on Si (001). CrystEngComm 14(23), 7851–7855 (2012). https://doi.org/10.1039/C2CE26155C

    Article  Google Scholar 

  14. Yang, D., Kim, B., Eom, T.H., Park, Y., Jang, H.W.: Epitaxial growth of alpha gallium oxide thin films on sapphire substrates for electronic and optoelectronic devices: progress and perspective. Electron. Mater. Lett. 18(2), 113–128 (2022). https://doi.org/10.1007/s13391-021-00333-5

    Article  CAS  Google Scholar 

  15. Suo, Z.: Fracture in thin films, Encycl. Mater: Sci. Technol., 3290 (2001).

  16. Liaw, H.P., Davis, R.F.: Thermal stresses in heteroepitaxial beta silicon carbide thin films grown on silicon substrates. J. Electrochem. Soc. 131(12), 3014 (1984). https://doi.org/10.1149/1.2115458

    Article  CAS  Google Scholar 

  17. Lee, H.A., Park, J.H., Lee, J.H., Lee, S.H., Kang, H.S., Lee, S.K., Park, W.I., Yi, S.C.: Study on the variation of surface morphology and residual stress under various thermal annealing conditions with bulk GaN substrates grown by HVPE. Electron. Mater. Lett. 17, 43–53 (2021). https://doi.org/10.1007/s13391-020-00252-x

    Article  CAS  Google Scholar 

  18. Sameshima, S., Kawaminami, M., Hirata, Y.: Thermal expansion of rare-earth-doped ceria ceramics. J. Ceram. Soc. Jpn. 110(1283), 597–600 (2002). https://doi.org/10.2109/jcersj.110.597

    Article  CAS  Google Scholar 

  19. Watanabe, H., Yamada, N., Okaji, M.: Linear thermal expansion coefficient of silicon from 293 to 1000 K. Int. J. Thermophys. 25(1), 221–236 (2004). https://doi.org/10.1023/B:IJOT.0000022336.83719.43

    Article  CAS  Google Scholar 

  20. Choi, H.J., Jang, J., Jung, S.Y., Ning, R., Kim, M.S., Jung, S.J., Lee, J.Y., Park, J.S., Lee, B.C., Jang, J.-S., Kim, S.K., Lee, K.H., Lee, J.H., Won, S.O., Li, Y., Hu, S., Choi, S.-Y., Baek, S.H.: Thermal stress-assisted annealing to improve the crystalline quality of an epitaxial YSZ buffer layer on Si. J. Mater. Chem. C 10(27), 10027–10036 (2022). https://doi.org/10.1039/D2TC01665F

    Article  CAS  Google Scholar 

  21. Hutchinson, J.W., Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1991). https://doi.org/10.1016/S0065-2156(08)70164-9

    Article  Google Scholar 

  22. Ye, T., Suo, Z., Evans, A.G.: Thin film cracking and the roles of substrate and interface. Int. J. Solids Struct. 29(21), 2639–2648 (1992). https://doi.org/10.1016/0020-7683(92)90227-K

    Article  Google Scholar 

  23. Hoffman, D.W., Thornton, J.A.: Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source. J. Vac. Sci. Technol. 20(3), 355–358 (1982). https://doi.org/10.1116/1.571463

    Article  CAS  Google Scholar 

  24. Liao, M.Y., Gotoh, Y., Tsuji, H., Ishikawa, J.: Growth and stress evolution of hafnium nitride films sputtered from a compound target. J. Vac. Sci. Technol. A Vac. Surf. Films 22(1), 214–220 (2004). https://doi.org/10.1116/1.1636159

    Article  CAS  Google Scholar 

  25. Thornton, J.A., Hoffman, D.W.: Stress-related effects in thin films. Thin Solid Films 171(1), 5–31 (1989). https://doi.org/10.1016/0040-6090(89)90030-8

    Article  Google Scholar 

  26. Meyer, F., Zafrany, M., Eizenberg, M., Beserman, R., Schwebel, C., Pellet, C.: Raman scattering and stress measurements in Si1−x Ge x layers epitaxially grown on Si (100) by ion-beam sputter deposition. J. Appl. Phys. 70(8), 4268–4277 (1991). https://doi.org/10.1063/1.349104

    Article  CAS  Google Scholar 

  27. Dunstan, D.J.: Strain and strain relaxation in semiconductors. J. Mater. Sci: Mater. Electron. 8, 337–375 (1997). https://doi.org/10.1023/A:1018547625106

    Article  CAS  Google Scholar 

  28. Merckling, C., El-Kazzi, M., Delhaye, G., Favre-Nicolin, V., Robach, Y., Gendry, M., Grenet, G., Saint-Girons, G., Hollinger, G.: Strain relaxation and critical thickness for epitaxial LaAlO3 thin films grown on SrTiO3 (001) substrates by molecular beam epitaxy. J. Cryst. Growth. 306(1), 47–51 (2007). https://doi.org/10.1016/j.jcrysgro.2007.04.048

    Article  CAS  Google Scholar 

  29. Meyer, T.L., Jiang, L., Park, S., Egami, T., Lee, H.N.: Strain-relaxation and critical thickness of epitaxial La1. 85Sr0.15CuO4 films. APL Mater. 3(12), 126102 (2015). https://doi.org/10.1063/1.4937170

    Article  CAS  Google Scholar 

  30. Zhang, M., Zhang, L., Zhang, Z., Yu, P., Yao, S.: GaAsBi quantum dots for 1.55 μm laser diode. Electron. Mater. Lett. 17, 181–187 (2021). https://doi.org/10.1007/s13391-020-00262-9

    Article  CAS  Google Scholar 

  31. Han, D., Bouras, M., Botella, C., Benamrouche, A., Canut, B., Grenet, G., Saint-Girons, G., Bachelet, R.: Poisson ratio and bulk lattice constant of (Sr0.25La0.75) CrO3 from strained epitaxial thin films. J. Appl. Phys. 126(8), 085304 (2019). https://doi.org/10.1063/1.5101049

    Article  CAS  Google Scholar 

  32. Cui, Z., Sun, Y., Qu, J.: Molecular dynamics simulation of reduced CeO2. Solid State Ion. 226, 24–29 (2012). https://doi.org/10.1016/j.ssi.2012.08.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (NRF-2020M3F3A2A01081572 and NRF-2020M3D1A2101933).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hyub Baek.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S.Y., Choi, HJ., Lee, J.Y. et al. Evolution of Microcracks in Epitaxial CeO2 Thin Films on YSZ-Buffered Si. Electron. Mater. Lett. (2023). https://doi.org/10.1007/s13391-023-00449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-023-00449-w

Keywords

Navigation