Skip to main content
Log in

Interfacial Engineering of In2O3/In2S3 Heterojunction Photoanodes for Photoelectrochemical Water Oxidation

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting is one of the critical energy conversion techniques to prepare for future energy demands. Among the various trials to construct effective water splitting semiconductor photoelectrodes, In2O3/In2S3 heterostructures can be promising candidates for their advantageous properties in solar water oxidation. Herein, we synthesized In2O3 nanorods on FTO substrate through a direct glancing angle deposition method. Subsequently, the In2S3 layer was conformally coated on In2O3 nanorods through facile chemical bath deposition. As synthesized photoanodes of In2O3/In2S3 form type II junction, leading to considerable cathodic onset potential shift with the increased photocurrent density compared to pristine samples. To further enhance PEC properties, the interficial engineering strategies of the Co ion doping and the deposition of ultra-thin Al2O3 film were carried out. Co ion could facilitate the charge transfer in photoanodes through the increased surface area, and the 2 nm Al2O3 layer coated above the photoanode effectively worked as the passivation layer to stabilize the photoanodes in alkaline electrolytes environments. This work would contribute to developing efficient photoanodes through various nanoscale engineering strategies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi, S., Lee, S.A., Yang, H., Lee, T.H., Kim, C., Lee, C.W., Shin, H., Jang, H.W.: Stabilization of NiFe layered double hydroxides on n-Si by an activated TiO2 interlayer for efficient solar water oxidation. ACS Appl. Energy Mater. 3, 12298 (2020)

    Article  CAS  Google Scholar 

  2. Chen, G., Wang, T., Zhang, J., Liu, P., Sun, H., Zhuang, X., Chen, M., Feng, X.: Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 30, 1706279 (2018)

    Article  CAS  Google Scholar 

  3. Lee, S.A., Park, I.J., Yang, J.W., Park, J., Lee, T.H., Kim, C., Moon, J., Kim, J.Y., Jang, H.W.: Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting. Cell Rep. Phys. Sci. 1, 100219 (2020)

    Article  CAS  Google Scholar 

  4. Sharma, M.D., Mahala, C., Basu, M.: Photoelectrochemical water splitting by In2S3/In2O3 composite nanopyramids. ACS Appl. Nano Mater. 3, 11638 (2020)

    Article  CAS  Google Scholar 

  5. Wang, L., Wang, W., Chen, Y., Yao, L., Zhao, X., Shi, H., Cao, M., Liang, Y.: Heterogeneous p–n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution. ACS Appl. Mater. Interfaces 10, 11652 (2018)

    Article  CAS  Google Scholar 

  6. Baral, B., Mansingh, S., Reddy, K.H., Bariki, R., Parida, K.: Architecting a double charge-transfer dynamics In2S3/BiVO4 n–n isotype heterojunction for superior photocatalytic oxytetracycline hydrochloride degradation and water oxidation reaction: unveiling the association of physicochemical, electrochemical, and photocatalytic properties. ACS Omega 5, 5270 (2020)

    Article  CAS  Google Scholar 

  7. Huang, W., Gan, L., Yang, H., Zhou, N., Wang, R., Wu, W., Li, H., Ma, Y., Zeng, H., Zhai, T.: Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 27, 1702448 (2017)

    Article  CAS  Google Scholar 

  8. Zhang, L., Zhang, W., Yang, H., Fu, W., Li, M., Zhao, H., Ma, J.: Hydrothermal synthesis and photoelectrochemical properties of In2S3 thin films with a wedgelike structure. Appl. Surf. Sci. 258, 9018 (2012)

    Article  CAS  Google Scholar 

  9. Gao, C., Li, J., Shan, Z., Huang, F., Shen, H.: Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 122, 183 (2010)

    Article  CAS  Google Scholar 

  10. Omelianovych, A., Kim, J.H., Liudmila, L., Ahn, B.T.: Effect of post annealing on the characteristics of In2S3 buffer layer grown by chemical bath deposition on a CIGS substrate. Curr. Appl. Phys. 15, 1641 (2015)

    Article  Google Scholar 

  11. Lu, J., Zheng, Z., Gao, W., Yao, J., Zhao, Y., Xiao, Y., Wang, B., Li, J.: Epitaxial growth of large-scale In2S3 nanoflakes and the construction of a high performance In2S3/Si photodetector. J. Mater. Chem. C 7, 12104 (2019)

    Article  CAS  Google Scholar 

  12. Horani, F., Lifshitz, E.: Unraveling the growth mechanism forming stable γ-In2S3 and β-In2S3 colloidal nanoplatelets. Chem. Mater. 31, 1784 (2019)

    Article  CAS  Google Scholar 

  13. Gao, Y., Zhang, S., Bu, X., Tian, Y.: Surface defect engineering via acid treatment improving photoelectrocatalysis of β-In2S3 nanoplates for water splitting. Catal. Today 327, 271 (2019)

    Article  CAS  Google Scholar 

  14. Bayón, R., Herrero, J.: Structure and morphology of the indium hydroxy sulphide thin films. Appl. Surf. Sci. 158, 49 (2000)

    Article  Google Scholar 

  15. Lai, X., Zhu, F., Wu, Y., Huang, R., Wu, X., Zhang, Q., Yang, K., Qin, S.: New high-pressure polymorph of In2S3 with defect Th3P4-type structure. J. Solid State Chem. 210, 155 (2014)

    Article  CAS  Google Scholar 

  16. Li, H., Chen, C., Huang, X., Leng, Y., Hou, M., Xiao, X., Bao, J., You, J., Zhang, W., Wang, Y., Song, J., Wang, Y., Liu, Q., Hope, G.A.: Fabrication of In2O3@In2S3 core–shell nanocubes for enhanced photoelectrochemical performance. J. Power Sources 247, 915 (2014)

    Article  CAS  Google Scholar 

  17. Jayakrishnan, R., John, T.T., Kartha, C.S., Vijayakumar, K.P., Jain, D., Chandra, L.S.S., Ganesan, V.: Do the grain boundaries of β-In2S3 thin films have a role in sub-band-gap photosensitivity to 632.8nm? J. Appl. Phys. 103, 053106 (2008)

    Article  CAS  Google Scholar 

  18. Pan, X., Yang, M.Q., Fu, X., Zhang, N., Xu, Y.J.: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601 (2013)

    Article  CAS  Google Scholar 

  19. Xu, H., Chen, H., Chen, S., Wang, K., Wang, X.: Fabrication of In2O3/In2S3 heterostructures for enhanced photoelectrochemical performance. Int. J. Hydrog. Energy 46, 32445 (2021)

    Article  CAS  Google Scholar 

  20. Basu, S.S., Rahut, S., Chinthala, C., Basu, J.K.: Tuning of the morphological and electronic properties of In2S3 nanosheets by cerium ion intercalation for optimizing photocatalytic activity. CrystEngComm 22, 4758 (2020)

    Article  CAS  Google Scholar 

  21. Li, J., Ma, Y., Ye, Z., Zhou, M., Wang, H., Ma, C., Wang, D., Huo, P., Yan, Y.: Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Appl. Catal. B Environ. 204, 224 (2017)

    Article  CAS  Google Scholar 

  22. Chen, D., Liu, Z.: Efficient indium sulfide photoelectrode with crystal phase and morphology control for high-performance photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 6, 12328 (2018)

    Article  CAS  Google Scholar 

  23. Zhao, Z., Cao, Y., Yi, J., He, X., Ma, C., Qiu, J.: Band-edge electronic structure of β-In2S3: the role of s or p Orbitals of atoms at different lattice positions. ChemPhysChem 13, 1551 (2012)

    Article  CAS  Google Scholar 

  24. Li, M., Tu, X., Su, Y., Lu, J., Hu, J., Cai, B., Zhou, Z., Yang, Z., Zhang, Y.: Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 10, 1153 (2018)

    Article  CAS  Google Scholar 

  25. Tian, Y., Wang, L., Tang, H., Zhou, W.: Ultrathin two-dimensional β-In2S3 nanocrystals: oriented-attachment growth controlled by metal ions and photoelectrochemical properties. J. Mater. Chem. A 3, 11294 (2015)

    Article  CAS  Google Scholar 

  26. Dan, M., Zhang, Q., Yu, S., Prakash, A., Lin, Y., Zhou, Y.: Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl. Catal. B Environ. 217, 530 (2017)

    Article  CAS  Google Scholar 

  27. Hsieh, P.Y., Chiu, Y.H., Lai, T.H., Fang, M.J., Wang, Y.T., Hsu, Y.J.: TiO2 nanowire-supported sulfide hybrid photocatalysts for durable solar hydrogen production. ACS Appl. Mater. Interfaces 11, 3006 (2019)

    Article  CAS  Google Scholar 

  28. Lucena, R., Fresno, F., Conesa, J.C.: Spectral response and stability of In2S3 as visible light-active photocatalyst. Catal. Commun. 20, 1 (2012)

    Article  CAS  Google Scholar 

  29. Lee, B.R., Lee, M.G., Park, H., Lee, T.H., Lee, S.A., Bhat, S.S.M., Kim, C., Lee, S., Jang, H.W.: All-solution-processed WO3/BiVO4 core–shell nanorod arrays for highly stable photoanodes. ACS Appl. Mater. Interfaces 11, 20004 (2019)

    Article  CAS  Google Scholar 

  30. Xu, H., Wang, Y., Dong, X., Zheng, N., Ma, H., Zhang, X.: Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Appl. Catal. B Environ. 257, 117932 (2019)

    Article  CAS  Google Scholar 

  31. Yoshinaga, T., Saruyama, M., Xiong, A., Ham, Y., Kuang, Y., Niishiro, R., Akiyama, S., Sakamoto, M., Hisatomi, T., Domen, K., Teranishi, T.: Boosting photocatalytic overall water splitting by Co doping into Mn3O4 nanoparticles as oxygen evolution cocatalysts. Nanoscale 10, 10420 (2018)

    Article  CAS  Google Scholar 

  32. Zhang, S., Yu, T., Liu, Y., Feng, M., Li, X., Sun, W., Wang, D.: A new SiP QDs/TiO2 NRs composite catalyst with Al2O3 passivation layer for enhanced photoelectrochemical water splitting. Chem. Eng. J. 429, 132248 (2022)

    Article  CAS  Google Scholar 

  33. Pihosh, Y., Turkevych, I., Mawatari, K., Uemura, J., Kazoe, Y., Kosar, S., Makita, K., Sugaya, T., Matsui, T., Fujita, D., Tosa, M., Kondo, M., Kitamori, T.: Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015)

    Article  Google Scholar 

  34. Jeon, J.M., Shim, Y.S., Han, S.D., Kim, D.H., Kim, Y.H., Kang, C.Y., Kim, J.S., Kim, M., Jang, H.W.: Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases. J. Mater. Chem. A 3, 17939 (2015)

    Article  CAS  Google Scholar 

  35. Pulipaka, S., Koushik, A.K.S., Deepa, M., Meduri, P.: Enhanced photoelectrochemical activity of Co-doped β-In2S3 nanoflakes as photoanodes for water splitting. RSC Adv. 9, 1335 (2019)

    Article  CAS  Google Scholar 

  36. Zheng, Z., Yu, J., Cheng, S., Lai, Y., Zheng, Q., Pan, D.: Investigation of structural, optical and electrical properties of Cu doped β-In2S3 thin films. J. Mater. Sci. Mater. Electron. 27, 5810 (2016)

    Article  CAS  Google Scholar 

  37. Jrad, F., Ben Naceur, J., Ouertani, R., Chtourou, R.: Photo-electrochemical impedance spectroscopy analysis of hydrothermally synthesized β-In2S3 thin film photo-anodes. Phys. E Low Dimens. Syst. Nanostruct. 114, 113 (2019)

    Article  CAS  Google Scholar 

  38. Musselman, K.P., Marin, A., Wisnet, A., Scheu, C., MacManus-Driscoll, J.L., Schmidt-Mende, L.: A novel buffering technique for aqueous processing of zinc oxide nanostructures and interfaces, and corresponding improvement of electrodeposited ZnO–Cu2O photovoltaics. Adv. Funct. Mater. 21, 573 (2011)

    Article  CAS  Google Scholar 

  39. Wang, Y., Tian, W., Chen, L., Cao, F., Guo, J., Li, L.: Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 9, 40235 (2017)

    Article  CAS  Google Scholar 

  40. Pareek, A., Paik, P., Borse, P.H.: Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell. Langmuir 30, 15540 (2014)

    Article  CAS  Google Scholar 

  41. Yang, D., Kim, B., Eom, T.H., Park, Y., Jang, H.W.: Epitaxial growth of alpha gallium oxide thin films on sapphire substrates for electronic and optoelectronic devices: progress and perspective. Electron. Mater. Lett. 18, 113–128 (2022)

    Article  CAS  Google Scholar 

  42. Park, J., Kim, H., Choi, P., Jeon, B., Lee, J., Oh, C., Kim, B., Choi, B.: Effect of ALD- and PEALD-grown Al2O3 gate insulators on electrical and stability properties for a-IGZO thin-film transistor. Electron. Mater. Lett. 17, 299–306 (2021)

    Article  CAS  Google Scholar 

  43. Kim, K.: Analysis on trap states in p-metal-oxide-semiconductor capacitors with ultraviolet/ozone-treated gan interfaces through frequency-dispersion capacitance-voltage measurements. Electron. Mater. Lett. 16, 140–145 (2020)

    Article  CAS  Google Scholar 

  44. Lee, B.R., Jang, H.W.: β-In2S3 as water splitting photoanodes: promise and challenges. Electron. Mater. Lett. 17, 119–135 (2021)

    Article  CAS  Google Scholar 

  45. Kim, J., Jung, Y.H., Kwak, J.Y., Kim, Y.L.: Synthesis and characterization of Nb, Mo-doped and Nb/Mo-codoped monoclinic VO2 nanoparticles and their thin films by hydrothermal/post-thermal transformation and wet-coating method. J. Korean Chem. Soc. 63, 94 (2019)

    CAS  Google Scholar 

  46. Lee, M.G., Yang, J.W., Park, H., Moon, C.W., Andoshe, D.M., Park, J., Moon, C.-K., Lee, T.H., Choi, K.S., Cheon, W.S., Kim, J.-J., Jang, H.W.: Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots. Nano-Micro Lett. 14, 48 (2022)

  47. Lee, S.A., Yang, J.W., Choi, S., Jang, H.W.: Nanoscale electrodeposition: Dimension control and 3D conformality. Exploration. 1, 20210012 (2021)

Download references

Acknowledgements

This work was financially supported by Nuclear Energy R&D Program (2020M2D8A206983012). The Inter-University Semiconductor Research Center and Institute of Engineering Research at Seoul National University provided research facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Won Jang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.R., Choi, S., Cheon, W.S. et al. Interfacial Engineering of In2O3/In2S3 Heterojunction Photoanodes for Photoelectrochemical Water Oxidation. Electron. Mater. Lett. 18, 391–399 (2022). https://doi.org/10.1007/s13391-022-00346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00346-8

Keywords

Navigation