Skip to main content
Log in

Enhancement of Mechanical and Thermal Properties of SU-8 Photoresist with Multilayer Woven Glass Fabric Based on Micromachining Technology

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

SU-8 photoresist has been more and more widely used as a structural material in micro electromechanical system (MEMS) because of its low cost and excellent biocompatibility. However, the inferior mechanical and thermal performances immensely impinge the reliability of the MEMS device based SU-8 and accordingly restrict its application. Here we report the mechanical and thermal performance of SU-8 reinforced by the multilayer glass fabric with the MEMS technology. The finite element simulation and specific experiment are conducted, which confirm that the reinforced SU-8 composites have a 281% increase in Young's modulus and a 64% decrease in coefficient of thermal expansion (CTE) compared with pure SU-8. Additionally, the improved mechanism has also been analyzed, including the excellent interface bonding between the SU-8 and glass fabric, and the high-bond energy of Si–O-Si chain structures in glass fabric. Furthermore, the glass fabric reinforced SU-8 could still possess a high light transmittance to maintain the ability of lithography patterning. Therefore, it is believed that the strategy proposed here may satisfy higher requirements of MEMS devices, which guarantees its practical applications in the functional microstructures.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iqbal, S., Malik, A.: A review on MEMS based micro displacement amplification mechanisms. Sensor. Actuat. A-Phys. 300, 111666 (2019)

    Article  CAS  Google Scholar 

  2. Ma, J.: Advanced MEMS-based technologies and displays. Displays 37, 2–10 (2015)

    Article  CAS  Google Scholar 

  3. Judy, J.W.: Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 1115–1134 (2001)

    Article  Google Scholar 

  4. Tilli, M., Motooka, T., Airaksinen, V.M., Franssila, S., Paulasto-Krockel, M., Lindroos, V.: Handbook of Silicon Based MEMS Materials and Technologies. William Andrew, London (2015)

    Google Scholar 

  5. Alcocka, J.R., Attiab, U.M.: A through-life approach to developing high-performance microsystems. Proc. CIRP 11, 272–277 (2013)

    Article  Google Scholar 

  6. Stanimirović, Z., Stanimirović, I.: Mechanical Properties of MEMS Materials. Micro Electronic and Mechanical Systems. Takahata, Rijeka (2009)

    Book  Google Scholar 

  7. Dong, K., Peng, X., Zhang, J.J., Gu, B.H., Sun, B.Z.: Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: Experimental and numerical studies. Compos. Struct. 176, 329–341 (2017)

    Article  Google Scholar 

  8. Wang, P.C., et al.: Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J. Microelectromech. Syst. 22, 1041–1053 (2013)

    Article  CAS  Google Scholar 

  9. Fiedler, E., Haas, N., Stieglitz, T.: Suitability of SU-8, EpoClad and EpoCore for flexible waveguides on implantable neural probes. In: Conference on Proceedings of IEEE Engineering Medical Biology Society, pp. 438–441 (2014).

  10. Kuo, J.T.W., Meng, E.: Improved process for high yield 3D inclined SU-8 structures on soda lime substrate towards applications in optogenetic studies. In: IEEE 25th International Conference on Micro Electronic Mechanical Systems, pp. 263–266 (2012).

  11. Arscott, S.: SU-8 as a material for lab-on-a-chip-based mass spectrometry. Lab Chip 14, 3668–3689 (2014)

    Article  CAS  Google Scholar 

  12. Becker, H., Gärtner, C.: Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 390, 89–111 (2008)

    Article  CAS  Google Scholar 

  13. Lorenz, H., Despont, M., Fahrni, N., et al.: SU-8: a low-cost negative resist for MEMS. J. Micromech. Microeng. 7, 121–124 (1997)

    Article  CAS  Google Scholar 

  14. Seghir, R., Arscott, S.: Photo-hardenable and patternable PDMS/SU-8 hybrid functional material: A smart substrate for flexible systems. Polym. Sci. Pol. Phys. 53, 1281–1291 (2015)

    Article  CAS  Google Scholar 

  15. Jiguet, S., et al.: Conductive SU8 photoresist for microfabrication. Adv. Funct. Mater. 15, 1511–1516 (2005)

    Article  CAS  Google Scholar 

  16. Nemani, K.V., Moodie, K.L., Brennick, J.B., et al.: In vitro and in vivo evaluation of SU-8 biocompatibility. Mat. Sci. Eng. C-Mater. 33, 4453–4459 (2013)

    Article  CAS  Google Scholar 

  17. Katiyar, J.K., Sinha, S.K., Kumar, A.: Effects of carbon fillers on the tribological and mechanical properties of an epoxy-based polymer (SU-8). Tribol. Mater. Surf. Interfaces 10, 33–44 (2016)

    Article  CAS  Google Scholar 

  18. Hemker, K.J., Sharpe, W.N.: Microscale characterization of mechanical properties. Rev. Mater. Res. 37, 93–126 (2007)

    Article  CAS  Google Scholar 

  19. Robin, C.J., Jonnalagadda, K.N.: Effect of size and moisture on the mechanical behavior of SU-8 thin films. J. Micromech. Microeng. 26, 25020 (2016)

    Article  Google Scholar 

  20. Chung, S.W., Makhar, S., Ackler, H., Park, S.: Material characterization of carbon-nanotube-reinforced polymer composite. Electron. Mater. Lett. 2, 175–181 (2006)

    CAS  Google Scholar 

  21. Park, S., Chung, S.W., Ackler, H., Makhar, S.: Viscoelastic material properties of SU-8 and carbon-nanotube-reinforced SU-8 materials. In: Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology, pp. 43–52 (2006).

  22. Saravanan, P., Satyanarayana, N., Sinha, S.K.: Self-lubricating Su-8 nanocomposites for microelectromechanical systems applications. Tribol. Lett. 49, 169–178 (2012)

    Article  Google Scholar 

  23. Jiguet, S., Bertsch, A., Judelewicz, M., Hofmann, H., Renaud, P.: SU-8 nanocomposite photoresist with low stress properties for microfabrication applications. Microelectron. Eng. 83, 1966–1970 (2006)

    Article  CAS  Google Scholar 

  24. Anisimov, A.V., Tryasunov, V.S., Shultceva, E.L., Sokolov, J.V., Mudry, F.V.: Epoxy vinyl ester binder for fire-resistant marine fiberglass plastics. Inorg Mater Appl Res. 9, 1116–1122 (2018)

    Article  Google Scholar 

  25. Pahonie, R.C., Stefan, A., Costuleanu, C.L.: Managing and analyzing the constructive and functional parameters on fiberglass custom sensor design for an aerodynamic balance. Mater. Plast. 54, 155–169 (2017)

    Article  Google Scholar 

  26. Kelkar, A.D., Tian, Q.Y., Demei, L.F.: Zhang, Boron nitride nanoparticle enhanced prepregs: a novel route for manufacturing aerospace structural composite laminate. Mater. Chem. Phys. 176, 136–142 (2017)

    Article  Google Scholar 

  27. Alomayri, T.: The microstructural and mechanical properties of geopolymer composites containing glass microfibers. Ceram. Int. 43, 4576–4582 (2017)

    Article  CAS  Google Scholar 

  28. Hao, Y.S., Liu, F.C., Han, E.H.: Mechanical and barrier properties of epoxy/ultra-short glass fibers composite coatings. J. Mater. Sci. & Technol. 28, 1077–1084 (2012)

    Article  CAS  Google Scholar 

  29. Wang, W.S., Zhou, W.W., Ding, G.F.: Glass fiber reinforced SU-8 adhesive technology. Micronano Electron. Technol. 57, 324–327 (2020)

    Google Scholar 

  30. Park, S.-J., Jin, J.-S.: Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J. Colloid. Interf. Sci. 242, 174–179 (2001)

    Article  CAS  Google Scholar 

  31. Chamis, C.C.: Mechanics of composite materials: past, present, and future. J. Compos. Tech. Res. 11, 3–14 (1989)

    Article  CAS  Google Scholar 

  32. Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380–404 (1968)

    Article  Google Scholar 

  33. Jitendra, K.K., Sujeet, K.S., Arvind, K.: Effects of carbon fillers on the tribological and mechanical properties of an epoxy-based polymer (SU-8). Tribol. Mater. Surf. Interfaces 10, 33–44 (2016)

    Article  Google Scholar 

  34. Yang, Y., Lai, L.Y., Ding, G.F., Chen, T.: SiC nanowire-based SU-8 with enhanced mechanical properties for MEMS structural layer design. Nanotechnol. Precis. Eng. 2, 169–176 (2019)

    Article  Google Scholar 

  35. Chen, H., Ojijo, V., Cele, H., Joubert, T., Suprakas, S.R., Land, K.: Tailoring the mechanical properties of SU-8/clay nanocomposites: polymer microcantilever fabrication perspective. MEMS Electro-Opt. Syst. 9257, 92570B (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the technology development fund of Shanghai Science and Technology Commission (No. 17DZ2291400), and Shanghai Professional Technical Service Platform for Non-Silicon Micro-Nano Integrated Manufacturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifu Ding.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Availability of data and material

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Li, Y., Sun, Y. et al. Enhancement of Mechanical and Thermal Properties of SU-8 Photoresist with Multilayer Woven Glass Fabric Based on Micromachining Technology. Electron. Mater. Lett. 16, 604–614 (2020). https://doi.org/10.1007/s13391-020-00247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00247-8

Keywords

Navigation