Tille, T.: Automotive suitability of air quality gas sensors. Sens Actuators B 170, 40–44 (2012)
CAS
Google Scholar
Mohankumar, P., Ajayan, J., Yasodharan, R., Devendran, P., Sambasivam, R.: A review of micromachined sensors for automotive applications. Measurement 140, 305–322 (2019)
Google Scholar
Rydosz, A.: Sensors for enhanced detection of acetone as a potential tool for noninvasive diabetes monitoring. Sensors 18, 2298 (2018)
Google Scholar
Righettoni, M., Schmid, A., Amann, A., Pratsinis, S.E.: Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. Breath Res. 7, 037110 (2013)
CAS
Google Scholar
Saidi, T., Zaim, O., Moufid, M., Bari, N.E., Ionescu, R., Bouchikhi, B.: Exhaled breath analysis using electronic nose and gas chromatography-mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuators B 257, 178–188 (2018)
CAS
Google Scholar
Kita, J., Schubert, F., Retting, F., Engelbrecht, A., Gross, A., Moos, R.: Ceramic alumina substrates for high-temperature gas sensors—implications for applicability. Proc. Eng. 87, 1505–1508 (2017)
Google Scholar
Bartsch, H., Stoepel, D., Mueller, J., Rydosz, A.: Printed heater elements for smart sensor packages in LTCC. In: 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, 10–13 Sept. 2017. IEEE Xplore. https://doi.org/10.23919/empc.2017.8346841
Rydosz, A., Maziarz, W., Pisarkiewicz, T.: Formation a uniform temperature distribution in semiconductors resistance gas sensors in LTCC technology. Electr. Rev. 87, 24–252 (2011)
Google Scholar
Rydosz, A., Szkudlarek, A., Ziabka, M., Domanski, K., Maziarz, W., Pisarkiewicz, T.: Performance of Si-doped WO3 thin films for acetone sensing prepared by glancing angle DC magnetron sputtering. IEEE Sens. J. 16, 1004–1012 (2016)
CAS
Google Scholar
Ozdemir, S., Gole, J.L.: The potential of porous silicon gas sensors. Curr. Opin. Solid State Mater. Sci. 11, 92–100 (2007)
CAS
Google Scholar
Dey, A.: Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018)
CAS
Google Scholar
Gao, X., Zhang, T.: An overview: facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B 277, 604–633 (2018)
CAS
Google Scholar
Eranna, G.: Metal oxide nanostructures as gas sensing devices. CRC Press, Book (2011)
Google Scholar
Korotcenkov, C., Cho, K.B.: Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuators B 244, 182–210 (2017)
CAS
Google Scholar
Jang, N.-S., Kim, M.S., Kim, S.-H., Lee, S.-K., Kim, J.-M.: Direct growth of titania nanotubes on plastic substrates and their application to flexible gas sensors. Sens. Actuators B 199, 361–368 (2014)
CAS
Google Scholar
Vallejos, S., Gracia, I., Bravo, J., Figueras, E., Hubalek, J., Cane, C.: Detection of volatile organic compounds using flexible gas sensing devices based on tungsten oxide nanostrucutres functionalized with Au and Pt nanoparticles. Talanta 139, 27–34 (2015)
CAS
Google Scholar
Kumar, L., Rawal, I., Kaur, A., Annapoorni, S.: Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B 240, 408–416 (2017)
CAS
Google Scholar
Hua, Ch., Shang, Y., Wang, Y., Xu, J., Zhang, Y., Li, X., Cao, A.: A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film. Appl. Surf. Sci. 405, 405–411 (2017)
CAS
Google Scholar
Sarfraz, J., Fogde, A., Ihalainen, P., Peltonen, J.: The performance of inkjet-printed copper acetate-based hydrogen sulfide gas sensor on a flexible plastic substrate—varying ink composition and print density. Appl. Surf. Sci. 445, 89–96 (2018)
CAS
Google Scholar
Wang, K., Wei, W., Lou, Z., Zhang, H., Wang, L.: 1D/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity. Appl. Surf. Sci. 479, 209–215 (2019)
CAS
Google Scholar
Zhou, X., Guo, W., Fu, J., Zhu, Y., Huang, Y., Peng, P.: Laser writing of Cu/CuxO integrated structure on flexible substrate for humidity sensing. Appl. Surf. Sci. 494, 684–690 (2019)
CAS
Google Scholar
Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B., Habchi, R.: A review on flexible gas sensors: From materials to devices. Sens. Actuators A 284, 209–231 (2018)
CAS
Google Scholar
Rydosz, A., Marszalek, K.: Portable device for detection of biomarkers in exhaled air and method of biomarker detection in exhaled air. EP18190345.1 (2018)
Asad, M., Sheikhi, M.H., Pourfath, M., Moradi, M.: High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs. Sens. Actuators B 210, 1–8 (2015)
CAS
Google Scholar
Li, S., Diao, Y., Yang, Z., He, J., Wang, J., Liu, C., Liu, F., Lu, H., Yan, X., Sun, P., Lu, G.: Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sens. Actuators B 276, 526–533 (2018)
CAS
Google Scholar
Kulkarni, S.B., Navale, Y.H., Navale, S.T., Stadler, F.J., Ramgir, N.S., Patil, V.B.: Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas. Sens. Actuators B 288, 279–288 (2019)
CAS
Google Scholar
Zhang, D., Wu, Z., Zong, X.: Flexible and highly sensitive H2S gas sensor based on in situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B 289, 32–41 (2019)
CAS
Google Scholar
Kuberský, P., Syrový, T., Hamácek, A., Nespurek, S., Stejskal, J.: Printed flexible gas sensors based on organic materials. Procedia Eng. 120, 614–617 (2015)
Google Scholar
Uddin, A.I., Yaqoob, U., Phan, D.T., Chung, G.S.: A novel flexible acetylene gas sensor based on PI/PTFE-supported Ag-loaded vertical ZnO nanorods array. Sens. Actuators B 222, 536–543 (2016)
CAS
Google Scholar
Lou, Z., Wang, L., Jiang, K., Shen, G.: Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 26, 176–198 (2019)
CAS
Google Scholar
Gardon, M., Monereo, O., Dosta, S., Vescio, G., Cirera, A., Guilemany, J.M.: New procedures for building-up the active layer of gas sensors on flexible polymers. Surf. Coat. Technol. 235, 848–852 (2013)
CAS
Google Scholar
Vallejos, S., Gràciaa, I., Figueras, E., Sánchez, J., Mas, R., Beldarrain, O., Canéa, C.: Microfabrication of flexible gas sensing devices based on nanostructured semiconducting metal oxides. Sens. Actuators 219, 88–93 (2014)
CAS
Google Scholar
Claramunt, S., Monereo, O., Boix, M., Leghriba, R., Prades, J.D., Cornet, A., Merino, P., Merino, C., Cirera, A.: Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres. Sens. Actuators B 187, 401–406 (2013)
CAS
Google Scholar
Liu, C., Tai, H., Zhang, P., Yuan, Z., Du, X., Xie, G., Jiang, Y.: A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B 261, 587–597 (2018)
CAS
Google Scholar
Liu, B., Liu, X., Yuan, Z., Jiang, Y., Su, Y., Ma, J., Tai, H.: A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens. Actuators B 295, 86–92 (2019)
CAS
Google Scholar
Perillo, P.M., Rodríguez, D.F.: Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J. Alloys Compd. 657, 765–769 (2016)
CAS
Google Scholar
Acuautla, M., Bernardini, S., Gallais, L., Bendahan, M.: Direct laser patterning of a gas sensor on flexible substrate. Procedia Eng. 87, 899–902 (2014)
CAS
Google Scholar
Chen, Q., Liu, D., Lin, L., Wu, J.: Bridging interdigitated electrodes by electrochemical-assisted deposition of graphene oxide for constructing flexible gas sensor. Sens. Actuators B 286, 591–599 (2019)
CAS
Google Scholar
Park, H.J., Kim, W.J., Lee, H.K., Lee, D.S., Shin, J.H., Jun, Y., Yun, Y.J.: Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics. Sens. Actuators B 257, 846–852 (2018)
CAS
Google Scholar
Rydosz, A., Szkudlarek, A.: Gas sensing performance of M-doped CuO-based thin films working at different temperatures upon exposure to propane. Sensors 15, 20069–20085 (2015)
CAS
Google Scholar
Rydosz, A.: Amorphous and nanocrystalline magnetron sputtered CuO thin films deposited on low temperature cofired ceramics substrates for gas sensor applications. IEEE Sens. J. 14, 1600–1607 (2014)
CAS
Google Scholar
Rydosz, A.: The use of copper oxide thin films in gas-sensing applications coatings 8, 425 (2018)
Google Scholar
Kollbek, K., Szkudlarek, A., Klejna, S., Rydosz, A.: Electronic sensitization of CuO thin films by Cr-doping for enhanced gas sensor response at low detection limit. Mater. Res. Express 5, 126406 (2018)
Google Scholar
Rydosz, A., Maziarz, W., Brudnik, A., Czapla, A., Zakrzewska, K.: CuO and CuO/TiO2-y thin-film gas sensors of H2 and NO2. In: 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE), Warsaw, Poland
Lyson-Sypien, B., Czapla, A., Lubecka, M., Gwizdz, P., Schneider, K., Zakrzewska, K., Michalow, K., Graule, T., Reszka, A., Rekas, M., Lacz, A., Radecka, M.: Nanopowders of chromium doped TiO2 for gas sensors. Sens. Actuators B 175, 163–172 (2012)
CAS
Google Scholar
Cardoso, J., Gomez-Daza, O., Ixtilco, L., Nair, M.T.S., Nair, P.K.: Conductive copper sulfide thin films on polyimide foils. Semicond. Sci. Tech. 16, 123–127 (2001)
CAS
Google Scholar
Garcia-Martinez, O., Rojas, R.M., Vila, E., Martin de Vidales, J.L.: Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ion. 63–65, 442–449 (1993)
Google Scholar