Skip to main content
Log in

Enhanced Mechanical Quality Factor of 32 Mode Mn Doped 71Pb(Mg1/3Nb2/3)O3–29PbZrTiO3 Piezoelectric Single Crystals

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The solid solution of relaxor and lead titanate single crystals have been an excellent choice for electromechanical applications such as energy harvesters, SONARs, transducers, and biomedical equipment. The mechanical quality factor (Qm) plays a crucial role in such applications using high power resonance condition. In this work, 32 mode (011) oriented along thickness direction, Generation-III piezoelectric single crystals based on PMN-PZT [71Pb(Mg1/3Nb2/3)O3–29PbZrTiO3] have been grown by solid state single crystal growth method. The Mn doping concentration in the crystals were systematically controlled within the range of 0 to 1.0 mol.%. The piezoelectric properties noticeably varied with the Mn doping concentration when the content is over 0.1 mol.%. In order to obtain significant enhancement in Qm in PMN-PZT single crystals, especially, the Mn doping concentration should be higher than 0.7 mol.% (which offers highest figure of merit) for high power resonance applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun, E., Cao, W.: Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog. Mater Sci. 65, 124–210 (2014)

    Article  CAS  Google Scholar 

  2. Oh, H., Lee, J.-Y., Lee, H.: Mn-modified PMN-PZT [Pb(Mg1/3Nb2/3)O3–Pb(Zr, Ti)O3] single crystals for high power piezoelectric transducers. J. Korean Ceram. Soc. 54, 150–157 (2017)

    Article  CAS  Google Scholar 

  3. Zhang, S., Luo, J., Xia, R., Rehrig, P.W., Randall, C.A., Shrout, T.R.: Field-induced piezoelectric response in Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Solid State Commun. 137, 16–20 (2006)

    Article  CAS  Google Scholar 

  4. Thakre, A., Kumar, A., Song, H.C., Jeong, D.Y., Ryu, J.: Pyroelectric energy conversion and its applications—flexible energy harvesters and sensors. Sensors 19, 2170 (2019)

    Article  CAS  Google Scholar 

  5. Kumar, A., Thakre, A., Jeong, D.Y., Ryu, J.: Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. J. Mater. Chem. C 7, 6836 (2019)

    Article  CAS  Google Scholar 

  6. Kumar, A., Kim, S.H., Peddigari, M., Jeong, D.Y., Hwang, G.T., Ryu, J.: High energy storage properties and electrical field stability of energy efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 relaxor ferroelectric ceramics. Electron. Mater. Lett. 15, 323–330 (2019)

    Article  CAS  Google Scholar 

  7. Patil, D.R., Kambale, R.C., Chai, Y., Yoon, W.-H., Jeong, D.-Y., Park, D.-S., Kim, J.-W., Choi, J.-J., Ahn, C.-W., Hahn, B.-D., Zhang, S., Kim, K.H., Ryu, J.: Multiple broadband magnetoelectric response in thickness-controlled Ni/[011] Pb(Mg1/3Nb2/3)O3–Pb(Zr,Ti)O3 single crystal/Ni laminates. Appl. Phys. Lett. 103, 052907 (2013)

    Article  Google Scholar 

  8. Patil, D.R., Chai, Y., Kambale, R.C., Jeon, B.-G., Yoo, K., Ryu, J., Yoon, W.-H., Park, D.-S., Jeong, D.-Y., Lee, S.-G., Lee, J., Nam, J.-H., Cho, J.-H., Kim, B.-I., Kim, K.H.: Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl. Phys. Lett. 102, 062909 (2013)

    Article  Google Scholar 

  9. Kambale, R.C., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ahn, C.-W., Kim, J.-W., Hahn, B.-D., Jeong, D.-Y., Lee, B.C., Chung, G.-S., Ryu, J.: Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3Nb2/3)O3–Pb(Zr, Ti)O3 single crystal/Ni cantilever. J. Appl. Phys. 113, 204108 (2013)

    Article  Google Scholar 

  10. Patil, D.R., Zhou, Y., Kang, J.-E., Sharpes, N., Jeong, D.-Y., Kim, Y.-D., Kim, K.H., Priya, S., Ryu, J.: Anisotropic self-biased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities. APL Mater. 2, 046102 (2014)

    Article  Google Scholar 

  11. Hwang, G.-T., Kim, Y., Lee, J.-H., Oh, S., Jeong, C.K., Park, D.Y., Ryu, J., Kwon, H., Lee, S.-G., Joung, B., Kim, D., Lee, K.J.: Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 8, 2677–2684 (2015)

    Article  CAS  Google Scholar 

  12. Ryu, J., Kang, J.-E., Zhou, Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Kim, Y.-D., Priya, S., Lee, S.Y., Jeong, S., Jeong, D.-Y.: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402–2408 (2015)

    Article  CAS  Google Scholar 

  13. Annapureddy, V., Kim, M., Palneedi, H., Lee, H.-Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Jeong, D.-Y., Ryu, J.: Low-loss piezoelectric single-crystal fibers for enhanced magnetic energy harvesting with magnetoelectric composite. Adv. Energy Mater. 6, 1601244 (2016)

    Article  Google Scholar 

  14. Annapureddy, V., Lee, H.Y., Yoon, W.-H., Woo, H.-J., Lee, J.-H., Palneedi, H., Kim, H.-J., Choi, J.-J., Jeong, D.-Y., Yi, S.N., Ryu, J.: Enhanced magnetic energy harvesting properties of magneto-mechano-electric generator by tailored geometry. Appl. Phys. Lett. 109, 093901 (2016)

    Article  Google Scholar 

  15. Annapureddy, V., Palneedi, H., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Jeong, D.-Y., Ryu, J.: A pT/√Hz sensitivity ac magnetic field sensor based on magnetoelectric composites using low-loss piezoelectric single crystals. Sens. Actuators A Phys. 260, 206–211 (2017)

    Article  CAS  Google Scholar 

  16. Peddigari, M., Lim, K.-W., Kim, M., Park, C.H., Yoon, W.-H., Hwang, G.-T., Ryu, J.: Effect of elastic modulus of cantilever beam on the performance of unimorph type piezoelectric energy harvester. APL Mater. 6, 121107 (2018)

    Article  Google Scholar 

  17. Hwang, G.-T., Palneedi, H., Jung, B.M., Kwon, S.J., Peddigari, M., Min, Y., Kim, J.-W., Ahn, C.-W., Choi, J.-J., Hahn, B.-D., Choi, J.-H., Yoon, W.-H., Park, D.-S., Lee, S.-B., Choe, Y., Kim, K.-H., Ryu, J.: Enhancement of magnetoelectric conversion achieved by optimization of interfacial adhesion layer in laminate composites. ACS Appl. Mater. Interfaces 10, 32323–32330 (2018)

    Article  CAS  Google Scholar 

  18. Palneedi, H., Na, S.-M., Hwang, G.-T., Peddigari, M., Shin, K.W., Kim, K.H., Ryu, J.: Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe–Ga alloy and Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal. J. Alloys Compd. 765, 764–770 (2018)

    Article  CAS  Google Scholar 

  19. Kang, W., Jung, J., Lee, W., Ryu, J., Choi, H.: A thickness-mode piezoelectric micromachined ultrasound transducer annular array using a PMN–PZT single crystal. J. Micromech. Microeng. 28, 075015 (2018)

    Article  Google Scholar 

  20. Annapureddy, V., Na, S.-M., Hwang, G.-T., Kang, M.G., Sriramdas, R., Palneedi, H., Yoon, W.-H., Hahn, B.-D., Kim, J.-W., Ahn, C.-W., Park, D.-S., Choi, J.-J., Jeong, D.-Y., Flatau, A.B., Peddigari, M., Priya, S., Kim, K.-H., Ryu, J.: Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy Environ. Sci. 11, 818–829 (2018)

    Article  CAS  Google Scholar 

  21. Peddigari, M., Kim, G.-Y., Park, C.H., Min, Y., Kim, J.-W., Ahn, C.-W., Choi, J.-J., Hahn, B.-D., Choi, J.-H., Park, D.-S., Hong, J.-K., Yeom, J.-T., Park, K.-I., Jeong, D.-Y., Yoon, W.-H., Ryu, J., Hwang, G.-T.: A comparison study of fatigue behavior of hard and soft piezoelectric single crystal macro-fiber composites for vibration energy harvesting. Sensors. 19, 2196 (2019)

    Article  CAS  Google Scholar 

  22. Li, F., Zhang, S., Xu, Z., Wei, X., Luo, J., Shrout, T.R.: Electromechanical properties of tetragonal Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric crystals. J. Appl. Phys. 107, 054107 (2010)

    Article  Google Scholar 

  23. Chen, Y.H., Hirose, S., Viehland, D., Takahashi, S., Uchino, K.: Mn-modified Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics: improved mechanical quality factors for high-power transducer applications. Jpn. J. Appl. Phys. 39, 4843–4852 (2000)

    Article  CAS  Google Scholar 

  24. Li, Y., Fang, H., Zheng, L., Du, J., Hao, J., Lu, X., Jing, Y., Wang, C., Zhang, R.: Mn doped ternary relaxor single crystal with high shear piezoelectricity and improved stability. Ceram. Int. 44, 18672–18677 (2018)

    Article  CAS  Google Scholar 

  25. Hao, H., Zhang, S., Shrout, T.R.: Dielectric and piezoelectric properties of the morphotropic phase boundary composition in the (0.8 − x)Pb(Mg1/3Ta2/3)O3–0.2PbZrO3–xPbTiO3 ternary system. J. Am. Ceram. Soc. 91, 2232–2235 (2008)

    Article  CAS  Google Scholar 

  26. Luo, L., Li, W., Zhu, Y., Wang, J.: Growth and characteristics of Mn-doped PMN-PT single crystals. Solid State Commun. 149, 978–981 (2009)

    Article  CAS  Google Scholar 

  27. Liu, G., Zhang, S., Jiang, W., Cao, W.: Losses in ferroelectric materials. Mater. Sci. Eng. R Rep. 89, 1–48 (2015)

    Article  CAS  Google Scholar 

  28. Zheng, L., Yang, L., Li, Y., Lu, X., Huo, D., Lü, W., Zhang, R., Yang, B., Cao, W.: Origin of improvement in mechanical quality factor in acceptor-doped relaxor-based ferroelectric single crystals. Phys. Rev. Appl. 9, 064028 (2018)

    Article  CAS  Google Scholar 

  29. Amin, A., Lee, H.-Y., Kelly, B.: High transition temperature lead magnesium niobate–lead zirconate titanate single crystals. Appl. Phys. Lett. 90, 242912 (2007)

    Article  Google Scholar 

  30. Zhang, S., Lee, S.M., Kim, D.H., Lee, H.Y., Shrout, T.R.: Characterization of high Tc Pb(Mg1∕3Nb2∕3)O3–PbZrO3–PbTiO3 single crystals fabricated by solid state crystal growth. Appl. Phys. Lett. 90, 232911 (2007)

    Article  Google Scholar 

  31. Zhang, S., Lee, S.-M., Kim, D.-H., Lee, H.-Y., Shrout, T.R.: Characterization of Mn-modified Pb(Mg1∕3Nb2∕3)O3–PbZrO3–PbTiO3 single crystals for high power broad bandwidth transducers. Appl. Phys. Lett. 93, 122908 (2008)

    Article  Google Scholar 

  32. 1859-2017—IEEE Standard for Relaxor-Based Single Crystals for Transducer and Actuator Applications, IEEE (2017)

  33. Yoon, S.-J., Joshi, A., Uchino, K.: Effect of additives on the electromechanical properties of Pb(Zr, Ti)O3–Pb(Y2/3W1/3)O3 ceramics. J. Am. Ceram. Soc. 80, 1035–1039 (2005)

    Article  Google Scholar 

  34. Bertotti G., Mayergoyz I.D.: The Science of Hysteresis. Academic: Hysteresis in materials. Gulf Professional Publishing. 3 (2006)

  35. Lee, D., Yoon, A., Jang, S.Y., Yoon, J.-G., Chung, J.-S., Kim, M., Scott, J.F., Noh, T.W.: Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011)

    Article  CAS  Google Scholar 

  36. Ren, X.: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004)

    Article  CAS  Google Scholar 

  37. Arlt, G., Neumann, H.: Internal bias in ferroelectric ceramics: origin and time dependence. Ferroelectrics 87, 109–120 (1988)

    Article  CAS  Google Scholar 

  38. Carl, K., Hardtl, K.H.: Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics 17, 473–486 (1977)

    Article  Google Scholar 

  39. He, L.-X., Li, C.-E.: Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci. 35, 2477–2480 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by the Global Frontier R&D Program on Centre for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT& Future Planning Korea (Grant No. NRF-2016M3A6B1925390), and the National Research Council of Science and Technology (NST) Grant by the Korea Government (MSIP) (No. CAP-17-04-KRISS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakre, A., Kumar, A., Jeong, DY. et al. Enhanced Mechanical Quality Factor of 32 Mode Mn Doped 71Pb(Mg1/3Nb2/3)O3–29PbZrTiO3 Piezoelectric Single Crystals. Electron. Mater. Lett. 16, 156–163 (2020). https://doi.org/10.1007/s13391-019-00195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00195-y

Keywords

Navigation