Skip to main content
Log in

Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid perovskite solar cells (PSCs) are considered as one of the most promising emerging photovoltaics with outstanding performance. However, the commonly used organic hole transport materials (HTMs) suffer from heat-, light-, and bias-induced degradation along with defect diffusion and hygroscopic properties. To resolve these issues in conventional HTMs, inorganic materials with superior chemical stability, high carrier mobility, and low cost have been developed, demonstrating improved stability under rigorous conditions such as high temperature and long-term illumination. Understanding the properties of alternative inorganic HTMs is of prominent importance to realize more stable and efficient PSCs. This review summarizes the recent progresses in inorganic HTMs adopted in various device architectures, with their remarkable achievements in efficiency and long-term stability.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from [86]. Copyright 2018, American Chemical Society

Fig. 2

Reprinted with permission from [87]. Copyright 2017, Nature Publishing Group

Fig. 3

a Reprinted with permission from [111]. Copyright 2016, Wiley-VCH. b Reprinted with permission from [113]. Copyright 2017, American Association for the Advancement of Science

Fig. 4

a Reprinted with permission from [121]. Copyright 2013, American Chemical Society. b Reprinted with permission from [128]. Copyright 2016, Royal Society of Chemistry

Fig. 5

Reprinted with permission from [141]. Copyright 2016, Royal Society of Chemistry

Fig. 6

a Reprinted with permission from [166]. Copyright 2018, Wiley-VCH. b Reprinted with permission from [172]. Copyright 2018, Wiley-VCH

Fig. 7

a Reprinted with permission from [174]. Copyright 2016, American Chemical Society. b Reprinted with permission from [179]. Copyright 2017, Royal Society of Chemistry

Fig. 8

Reprinted with permission from [181]. Copyright 2017, Elsevier

Fig. 9

Reprinted with permission from [183]. Copyright 2018, American Chemical Society

Fig. 10

a Reprinted with permission from [190]. Copyright 2019, Wiley-VCH. b Reprinted with permission from [191]. Copyright 2018, Nature Publishing Group

Fig. 11

Reprinted with permission from [191]. Copyright 2018, Nature Publishing Group

Fig. 12

Reprinted with permission from [199]. Copyright 2019, Elsevier

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)

    Google Scholar 

  2. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P.C., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016)

    Google Scholar 

  3. Duong, T., Wu, Y., Shen, H., Peng, J., Fu, X., Jacobs, D., Wang, E.-C., Kho, T.C., Fong, K.C., Stocks, M., Franklin, E., Blakers, A., Zin, N., McIntosh, K., Li, W., Cheng, Y.-B., White, T.P., Weber, K., Catchpole, K.: Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017)

    Google Scholar 

  4. Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.I.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376 (2017)

    Google Scholar 

  5. Wang, L., Zhou, H., Hu, J., Huang, B., Sun, M., Dong, B., Zheng, G., Huang, Y., Chen, Y., Li, L., Xu, Z., Li, N., Liu, Z., Chen, Q., Sun, L.-D., Yan, C.-H.: A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265 (2019)

    Google Scholar 

  6. Kim, J., Hwang, T., Lee, B., Lee, S., Park, K., Park, H.H., Park, B.: An aromatic diamine molecule as the A-site solute for highly durable and efficient perovskite solar cells. Small Methods 3, 1800361 (2019)

    Google Scholar 

  7. Hwang, T., Lee, B., Kim, J., Lee, S., Gil, B., Yun, A.-J., Park, B.: From nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv. Mater. 30, 1704208 (2018)

    Google Scholar 

  8. Lei, B., Eze, V.O., Mori, T.: High-performance CH3NH3PbI3 perovskite solar cells fabricated under ambient conditions with high relative humidity. Jpn. J. Appl. Phys. 54, 100305 (2015)

    Google Scholar 

  9. D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)

    Google Scholar 

  10. Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., Nicholas, R.J.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582 (2015)

    Google Scholar 

  11. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 6156 (2013)

    Google Scholar 

  12. Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., Huang, J.: Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 6225 (2015)

    Google Scholar 

  13. Jo, J.W., Yoo, Y., Jeong, T., Ahn, S., Ko, M.J.: Low-temperature processable charge transporting materials for the flexible perovskite solar cells. Electron. Mater. Lett. 14, 657 (2018)

    Google Scholar 

  14. Sheikh, A.K., Abdur, R., Singh, S., Kim, J.-H., Min, K.-S., Kim, J., Lee, J.: Effects of chlorine contents on perovskite solar cell structure formed on CdS electron transport layer probed by Rutherford backscattering. Electron. Mater. Lett. 14, 700 (2018)

    Google Scholar 

  15. Yun, A.J., Kim, J., Hwang, T., Park, B.: Origins of efficient perovskite solar cells with low-temperature processed SnO2 electron transport layer. ACS Appl. Energy Mater. 2, 3554 (2019)

    Google Scholar 

  16. Hwang, S.T., Hwang, T., Lee, S., Gil, B., Park, B.: Selective rear contact for Ga0.5In0.5P- and GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 182, 348 (2018)

    Google Scholar 

  17. Lee, S., Flanagan, J.C., Lee, B., Hwang, T., Kim, J., Gil, B., Shim, M., Park, B.: Route to improving photovoltaics based on CdSe/CdSexTe1−x type-II heterojunction nanorods: the effect of morphology and cosensitization on carrier recombination and transport. ACS Appl. Mater. Interfaces 9, 31931 (2017)

    Google Scholar 

  18. Lee, B., Lee, S., Cho, D., Kim, J., Hwang, T., Kim, K.H., Hong, S., Moon, T., Park, B.: Evaluating the optoelectronic quality of hybrid perovskites by conductive atomic force microscopy with noise spectroscopy. ACS Appl. Mater. Interfaces 8, 30985 (2017)

    Google Scholar 

  19. Hwang, S.-T., Kim, S., Cheun, H., Lee, H., Lee, B., Hwang, T., Lee, S., Yoon, W., Lee, H.-M., Park, B.: Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly efficient GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 155, 264 (2016)

    Google Scholar 

  20. Lee, S., Flanagan, J.C., Kang, J., Kim, J., Shim, M., Park, B.: Integration of CdSe/CdSexTe1−x type-II heterojunction nanorods into hierarchically porous TiO2 electrode for efficient solar energy conversion. Sci. Rep. 5, 17412 (2015)

    Google Scholar 

  21. Lee, W., Kang, S., Hwang, T., Kim, K., Woo, H., Lee, B., Kim, J., Kim, J., Park, B.: Facile conversion synthesis of densely-formed branched ZnO-nanowire arrays for quantum-dot-sensitized solar cells. Electrochim. Acta 167, 194 (2015)

    Google Scholar 

  22. Lee, S.-Y., Hwang, T., Lee, S., Lee, W., Lee, B., Kim, J., Kim, S., Lee, H., Lee, H.-M., Park, B.: Nanoroughness control of Al-doped ZnO for high efficiency Si thin-film solar cells. Curr. Appl. Phys. 15, 1353 (2015)

    Google Scholar 

  23. Moon, T., Shin, G.S., Park, B.: Recent advances in the transparent conducting ZnO for thin-film Si solar cells. Electron. Mater. Lett. 11, 917 (2015)

    Google Scholar 

  24. Choi, H., Nahm, C., Kim, J., Kim, C., Kang, S., Hwang, T., Park, B.: Review paper: toward highly efficient quantum-dot- and dye-sensitized solar cells. Curr. Appl. Phys. 13, S2 (2013)

    Google Scholar 

  25. Shin, G.S., Choi, W.-G., Na, S., Ryu, S.O., Moon, T.: Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017)

    Google Scholar 

  26. Shin, G.S., Choi, W.-G., Na, S., Gökdemir, F.P., Moon, T.: Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155 (2018)

    Google Scholar 

  27. Kayesh, E., Matsuishi, K., Chowdhury, T.H., Kaneko, R., Noda, T., Islam, A.: Enhanced photovoltaic performance of perovskite solar cells by copper chloride (CuCl2) as an additive in single solvent perovskite precursor. Electron. Mater. Lett. 14, 712 (2018)

    Google Scholar 

  28. Kim, C., Choi, H., Kim, J.I., Lee, S., Kim, J., Lee, W., Hwang, T., Kang, S., Moon, T., Park, B.: Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Nanoscale Res. Lett. 9, 295 (2014)

    Google Scholar 

  29. Choi, H., Kim, J., Nahm, C., Kim, C., Nam, S., Kang, J., Lee, B., Hwang, T., Kang, S., Choi, D.J., Kim, Y.-H., Park, B.: The role of ZnO-coating-layer thickness on the recombination in CdS quantum-dot-sensitized solar cells. Nano Energy 2, 1218 (2013)

    Google Scholar 

  30. Lee, S.-Y., Lee, W., Nahm, C., Kim, J., Byun, S., Hwang, T., Lee, B.-K., Jang, Y.I., Lee, S., Lee, H.-M., Park, B.: Nanostructural analysis of ZnO:Al thin films for carrier-transport mechanisms. Curr. Appl. Phys. 13, 775 (2013)

    Google Scholar 

  31. Nahm, C., Shin, S., Lee, W., Kim, J.I., Jung, D.-R., Kim, J., Nam, S., Byun, S., Park, B.: Electronic transport and carrier concentration in conductive ZnO:Ga thin films. Curr. Appl. Phys. 13, 415 (2013)

    Google Scholar 

  32. Lee, B., Kim, J.I., Lee, S., Hwang, T., Nam, S., Choi, H., Kim, K., Kim, J., Park, B.: Oriented hierarchical porous TiO2 nanowires on Ti substrate: evolution of nanostructures for dye-sensitized solar cells. Electrochim. Acta 145, 231 (2014)

    Google Scholar 

  33. Kim, J., Choi, H., Nahm, C., Kim, C., Kim, J.I., Lee, W., Kang, S., Lee, B., Hwang, T., Park, H.H., Park, B.: Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1−xS interlayer. Appl. Phys. Lett. 102, 183901 (2013)

    Google Scholar 

  34. Salim, T., Sun, S., Abe, Y., Krishna, A., Grimsdalea, A.C., Lam, Y.M.: Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943 (2015)

    Google Scholar 

  35. Umeyama, T., Imahori, H.: A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO2 and utilization of nanocarbon materials. Dalton Trans. 46, 15615 (2017)

    Google Scholar 

  36. Hawash, Z., Ono, L.K., Raga, S.R., Lee, M.V., Qi, Y.: Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-MeOTAD films. Chem. Mater. 27, 562 (2015)

    Google Scholar 

  37. Juarez-Perez, E.J., Leyden, M.R., Wang, S., Ono, L.K., Hawash, Z., Qi, Y.: Role of the dopants on the morphological and transport properties of spiro-MeOTAD hole transport layer. Chem. Mater. 28, 5702 (2016)

    Google Scholar 

  38. Wang, S., Sina, M., Parikh, P., Uekert, T., Shahbazian, B., Devaraj, A., Meng, Y.S.: Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano Lett. 16, 5594 (2016)

    Google Scholar 

  39. Lee, B., Hwang, T., Lee, S., Shin, B., Park, B.: Microstructural evolution of hybrid perovskites promoted by chlorine and its impact on the performance of solar cell. Sci. Rep. 9, 4803 (2019)

    Google Scholar 

  40. Hwang, T., Yun, A.J., Kim, J., Cho, D., Kim, S., Hong, S., Park, B.: Electronic traps and their correlations to perovskite solar cell performance via compositional and thermal annealing controls. ACS Appl. Mater. Interfaces 11, 6907 (2019)

    Google Scholar 

  41. Malinauskas, T., Tomkute-Luksiene, D., Sens, R., Daskeviciene, M., Send, R., Wonneberger, H., Jankauskas, V., Bruder, I., Getautis, V.: Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 7, 11107 (2015)

    Google Scholar 

  42. Ono, L.K., Raga, S.R., Remeika, M., Winchester, A.J., Gabea, A., Qi, Y.: Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J. Mater. Chem. A 3, 15451 (2015)

    Google Scholar 

  43. Jena, A.K., Numata, Y., Ikegamia, M., Miyasaka, T.: Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. J. Mater. Chem. A 6, 2219 (2018)

    Google Scholar 

  44. Ramavenkateswari, K., Venkatachalam, P.: Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell. Electron. Mater. Lett. 12, 628 (2016)

    Google Scholar 

  45. Park, C.-G., Choi, W.-G., Na, S., Moon, T.: All-inorganic perovskite CsPbI2Br through co-evaporation for planar heterojunction solar cells. Electron. Mater. Lett. 15, 56 (2019)

    Google Scholar 

  46. Rafique, S., Abdullah, S.M., Shahid, M.M., Ansari, M.O., Sulaiman, K.: Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT:PSS double decked hole transport layer. Sci. Rep. 7, 39555 (2017)

    Google Scholar 

  47. Ha, S.R., Park, S., Oh, J.T., Kim, D.H., Cho, S., Bae, S.Y., Kang, D.-W., Kim, J.-M., Choi, H.: Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for high-performance perovskite and polymer solar cells. Nanoscale 10, 13187 (2018)

    Google Scholar 

  48. Ochiai, S., Kumar, P., Santhakumar, K., Shin, P.-K.: Examining the effect of additives and thicknesses of hole transport layer for efficient organic solar cell devices. Electron. Mater. Lett. 9, 399 (2013)

    Google Scholar 

  49. Li, L., Gibson, E.A., Qin, P., Boschloo, G., Gorlov, M., Hagfeldt, A., Sun, A.: Double-layered NiO photocathodes for p-Type DSSCs with record IPCE. Adv. Mater. 22, 1759 (2010)

    Google Scholar 

  50. Brisse, R., Faddoul, R., Bourgeteau, T., Tondelier, T., Leroy, J., Campidelli, S., Berthelot, T., Geffroy, B., Jousselme, B.: Inkjet printing NiO-based p-type dye-sensitized solar cells. ACS Appl. Mater. Interfaces 9, 2369 (2017)

    Google Scholar 

  51. Manders, J.R., Tsang, S.-W., Hartel, M.J., Lai, T.-H., Chen, S., Amb, C.M., Reynolds, J.R., So, F.: Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993 (2013)

    Google Scholar 

  52. Jiang, F., Choy, W.C.H., Li, X., Zhang, D., Cheng, J.: Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 27, 2930 (2015)

    Google Scholar 

  53. Kim, J., Park, H.J., Grigoropoulos, C.P., Lee, D., Jang, J.: Solution-processed nickel oxide nanoparticles with NiOOH for hole injection layers of high-efficiency organic light-emitting diodes. Nanoscale 8, 17608 (2016)

    Google Scholar 

  54. Choi, H., Hwang, T., Lee, S., Nam, S., Kang, J., Lee, B., Park, B.: The Construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. J. Power Sources 274, 937 (2015)

    Google Scholar 

  55. Jung, E., Lee, H., Chae, H., Cho, S.M.: Effect of hole-transport-layer thickness on deep-blue emission in top-emitting cavity organic light-emitting diodes. Electron. Mater. Lett. 11, 764 (2015)

    Google Scholar 

  56. Liu, S., Liu, R., Chen, Y., Ho, S., Kim, J.H., So, F.: Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chem. Mater. 15, 4528 (2014)

    Google Scholar 

  57. Rajeswari, R., Mrinalini, M., Prasanthkumar, S., Giribabu, L.: Emerging of inorganic hole transporting materials for perovskite solar cells. Chem. Rec. 17, 681 (2017)

    Google Scholar 

  58. Yang, H., Tao, Q., Zhang, X., Tang, A., Ouyang, J.: Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. J. Alloys Compd. 459, 98 (2008)

    Google Scholar 

  59. Lee, B., Shin, B., Park, B.: Uniform Cs2SnI6 thin films for lead-free and stable perovskite optoelectronics via hybrid deposition approaches. Electron. Mater. Lett. 15, 192 (2019)

    Google Scholar 

  60. Lee, W., Hwang, T., Lee, S., Lee, S.-Y., Kang, J., Lee, B., Kim, J., Moon, T., Park, B.: Organic-acid texturing of transparent electrodes toward broadband light trapping in thin-film solar cells. Nano Energy 17, 180 (2015)

    Google Scholar 

  61. Yin, X., Liu, J., Ma, J., Zhang, C., Chen, P., Que, M., Yang, Y., Que, W., Niu, C., Shao, J.: Solvothermal derived crystalline NiOx nanoparticles for high performance perovskite solar cells. J. Power Sources 329, 398 (2015)

    Google Scholar 

  62. Chen, W., Liu, F.-Z., Feng, X.-Y., Djurišić, A.B., Chan, W.K., He, Z.-B.: Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 7, 1700722 (2017)

    Google Scholar 

  63. Sajid, S., Elseman, A.B., Huang, H., Ji, J., Dou, S., Jiang, H., Liu, X., Wei, D., Cui, P., Li, M.: Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51, 408 (2018)

    Google Scholar 

  64. Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Jang, G.S., Nam, S., Park, B.: Solvent and intermediate phase as boosters for the perovskite transformation and solar cell performance. Sci. Rep. 6, 25648 (2016)

    Google Scholar 

  65. Liu, Z., Zhu, A., Cai, F., Tao, L., Zhou, Y., Zhao, Z., Chen, Q., Cheng, Y.B., Zhou, H.: Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A 5, 6597 (2017)

    Google Scholar 

  66. Nejand, B.A., Ahmadi, V., Shahverdi, H.R.: New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells. ACS Appl. Mater. Interfaces 7, 21807 (2015)

    Google Scholar 

  67. Lee, S.-Y., Hwang, T., Lee, W., Lee, S., Choi, H., Ahn, S.-W., Lee, H.-M., Park, B.: Oxygen-controlled seed layer in DC sputter-deposited ZnO:Al substrate for Si thin-film solar cells. IEEE J. Photovolt. 5, 473 (2015)

    Google Scholar 

  68. Kim, J.I., Lee, W., Hwang, T., Kim, J., Lee, S.-Y., Kang, S., Choi, H., Hong, S., Park, H.H., Moon, T., Park, B.: Quantitative analyses of damp-heat-induced degradation in transparent conducting oxides. Sol. Energy Mater. Sol. Cells 122, 282 (2014)

    Google Scholar 

  69. Lee, B., Moon, T., Kim, T.-G., Choi, D.-K., Park, B.: Dielectric relaxation of atomic-layer-deposited HfO2 thin films from 1 kHz to 5 GHz. Appl. Phys. Lett. 87, 012901 (2005)

    Google Scholar 

  70. Liu, Z., Zhang, M., Xu, X., Bu, L., Zhang, W., Li, W., Zhao, Z., Wang, M., Cheng, Y.-B., He, H.: p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967 (2015)

    Google Scholar 

  71. Xu, X., Liu, Z., Zuo, Z., Zhang, M., Zhao, Z., Shen, Y., Zhou, H., Chen, Q., Yang, Y., Wang, M.: Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402 (2015)

    Google Scholar 

  72. Liu, Z., Zhang, M., Xu, X., Cai, F., Yuan, H., Bu, L., Li, W., Zhu, A., Zhao, Z., Wang, M., Cheng, Y.-B., He, H.: NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. J. Mater. Chem. A 3, 24121 (2015)

    Google Scholar 

  73. Woo, H., Wi, S., Kim, J., Kim, J., Lee, S., Hwang, T., Kang, J., Kim, J., Park, K., Gil, B., Nam, S., Park, B.: Complementary surface modification by disordered carbon and reduced graphene oxide on SnO2 hollow spheres as an anode for Li-ion battery. Carbon 129, 342 (2018)

    Google Scholar 

  74. Yang, Y., Chen, H., Zheng, X., Meng, X., Zhang, T., Hu, C., Bai, Y., Xiao, S., Yang, S.: Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy 42, 322 (2017)

    Google Scholar 

  75. Wang, K.-C., Jeng, J.-Y., Shen, P.-S., Chang, Y.-C., Diau, E.W.-G., Tsai, C.-H., Chao, T.-Y., Hsu, H.-C., Lin, P.-Y., Chen, P., Guo, T.-F., Wen, T.-C.: p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014)

    Google Scholar 

  76. Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., Yang, S.: High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. Engl. 53, 12571 (2014)

    Google Scholar 

  77. Wang, K.-C., Shen, P.-S., Li, M.-H., Chen, S., Lin, M.-W., Chen, P., Guo, T.-F.: Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851 (2014)

    Google Scholar 

  78. Hwang, T., Lee, S., Kim, J., Kim, J., Kim, C., Shin, B., Park, B.: Tailoring the mesoscopic TiO2 layer: concomitant parameters for enabling high-performance perovskite solar cells. Nanoscale Res. Lett. 12, 57 (2017)

    Google Scholar 

  79. Lee, S.-Y., Choi, H., Li, H., Ji, K., Nam, S., Choi, J., Ahn, S.-W., Lee, H.-M., Park, B.: Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell. Sol. Energy Mater. Sol. Cells 120, 412 (2014)

    Google Scholar 

  80. Nahm, C., Choi, H., Kim, J., Byun, S., Kang, S., Hwang, T., Park, H.H., Ko, J., Park, B.: A simple template-free ‘sputtering deposition and selective etching’ process for nanoporous thin films and its application to dye-sensitized solar cells. Nanotechnology 24, 365604 (2013)

    Google Scholar 

  81. Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., Hsu, Y.-J.: Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107 (2014)

    Google Scholar 

  82. Cui, J., Meng, F., Zhang, H., Cao, K., Yuan, H., Cheng, Y., Huang, F., Wang, M.: CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Appl. Mater. Interfaces 6, 22862 (2014)

    Google Scholar 

  83. Park, J.H., Seo, J., Park, S., Shin, S.S., Kim, Y.C., Jeon, N.J., Shin, H.-W., Ahn, T.K., Noh, J.H., Yoon, S.C., Hwang, C.S., Seok, S.I.: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015)

    Google Scholar 

  84. Zhang, H., Cheng, J., Lin, F., He, H., Mao, J., Wong, K.S., Jen, A.K.-Y., Choy, W.C.H.: Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10, 1503 (2016)

    Google Scholar 

  85. You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y.M., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N., Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75 (2016)

    Google Scholar 

  86. Zhou, Y., Yin, X., Luo, Q., Zhao, X., Zhou, D., Han, J., Hao, F., Tai, M., Li, J., Liu, P., Jiang, K., Lin, H.: Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes. ACS Appl. Mater. Interfaces 10, 31384 (2018)

    Google Scholar 

  87. Bush, K.A., Palmstorm, A.F., Yu, Z.J., Boccard, M., Cheacharoen, R., Mailoa, J.P., McMeekin, D.P., Rolston, N., Prasanna, R., Sofia, S., Harwood, D., Ma, W., Moghadam, F., Snaith, H.J., Buonassisi, T., Holman, Z.C., Bent, S.F., McGehee, M.: 23.6%-Efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017)

    Google Scholar 

  88. Wang, Y., Rho, W.-Y., Yang, H.-Y., Mahmoudi, T., Seo, S., Lee, D.-H., Hahn, Y.-B.: Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3–NiO nanoparticles composite. Nano Energy 27, 535 (2016)

    Google Scholar 

  89. Lin, M.-W., Wang, K.-C., Wang, J.-H., Li, M.-H., Lai, Y.-L., Ohigashi, T., Kosugi, N., Chen, P., Wei, D.-H., Guo, T.-F., Hsu, Y.-J.: Improve hole collection by interfacial chemical redox reaction at a mesoscopic NiO/CH3NH3PbI3 heterojunction for efficient photovoltaic cells. Adv. Mater. Interfaces 3, 1600135 (2016)

    Google Scholar 

  90. Shin, S.S., Yeom, E.J., Yang, W.S., Hur, S., Kim, M.G., Im, J., Seo, J., Noh, J.H., Seok, S.I.: Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167 (2017)

    Google Scholar 

  91. Sta, I., Jlassi, M., Hajji, M., Ezzaouia, H.: Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method. Thin Solid Films 555, 131 (2014)

    Google Scholar 

  92. Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M., Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015)

    Google Scholar 

  93. Li, G., Jiang, Y., Deng, S., Tam, A., Xu, P., Wong, M., Kwok, H.-S.: Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci. 4, 1700463 (2017)

    Google Scholar 

  94. Kim, J.H., Liang, P.-W., Williams, S.T., Cho, N., Chueh, C.-C., Glaz, M.S., Ginger, D.S., Jen, A.K.-Y.: High-Performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695 (2015)

    Google Scholar 

  95. Jung, J.W., Chueh, C.-C., Jen, A.K.-Y.: A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27, 7874 (2015)

    Google Scholar 

  96. Yue, S., Liu, K., Xu, R., Li, M., Azam, M., Ren, K., Liu, J., Sun, Y., Wang, Z., Cao, D., Yan, X., Qu, S., Lei, Y., Wang, Z.: Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy Environ. Sci. 10, 2570 (2017)

    Google Scholar 

  97. Yaacobi-Gross, N., Treat, N.D., Pattanasattayavong, P., Faber, H., Perumal, A.K., Stingelin, N., Bradley, D.D.C., Stavrinou, P.N., Heeney, M., Anthopoulos, T.D.: High-efficiency organic photovoltaic cells based on the solution-processable hole transporting interlayer copper thiocyanate (CuSCN) as a replacement for PEDOT:PSS. Adv. Energy Mater. 5, 1401529 (2015)

    Google Scholar 

  98. Kumara, G.R.R.A., Konno, A., Senadeera, G.K.R., Jayaweera, P.V.V., De Silva, D.B.R.A., Tennakone, K.: Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol. Energy Mater. Sol. Cells 69, 195 (2001)

    Google Scholar 

  99. O’Regan, B., Lenzmann, F., Muis, R., Wienke, J.: A solid-state dye-sensitized solar cell fabricated with pressure-treated P25–TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem. Mater. 14, 5023 (2002)

    Google Scholar 

  100. O’Regan, B.C., Scully, S., Mayer, A.C., Palomares, E., Durrant, J.: The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. J. Phys. Chem. B 109, 4616 (2005)

    Google Scholar 

  101. Perumal, A., Faber, H., Yaacobi-Gross, N., Pattanasattayavong, P., Burgess, C., Jha, S., McLachlan, M.A., Stavrinou, P.N., Anthopoulos, T.D., Bradley, D.D.C.: High-efficiency, solution-processed, multilayer phosphorescent organic light-emitting diodes with a copper thiocyanate hole-injection/hole-transport layer. Adv. Mater. 27, 93 (2015)

    Google Scholar 

  102. Pattanasattayavong, P., Ndjawa, G.O.N., Zhao, K., Chou, K.W., Yaacobi-Gross, N., O’Regan, B.C., Amassian, A., Anthopoulos, T.D.: Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem. Commun. 49, 4154 (2013)

    Google Scholar 

  103. Jaffe, J.E., Kaspar, T.C., Droubay, T.C., Varga, T., Bowden, M.E., Exarhos, G.J.: Electronic and defect structures of CuSCN. J. Phys. Chem. C 114, 9111 (2010)

    Google Scholar 

  104. Jung, J.W., Chueh, C.-C., Jen, A.K.-Y.: High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv. Energy Mater. 5, 1500486 (2015)

    Google Scholar 

  105. Ito, S., Tanaka, S., Vahlman, H., Nishino, H., Manabe, K., Lund, P.: Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects. ChemPhysChem 15, 1194 (2014)

    Google Scholar 

  106. Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazeeruddin, M.K., Grätzel, M.: Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014)

    Google Scholar 

  107. Ye, S., Sun, W., Li, Y., Yan, W., Peng, H., Bian, Z., Liu, Z., Huang, C.: CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723 (2015)

    Google Scholar 

  108. Ye, S., Rao, H., Yan, W., Li, Y., Sun, W., Peng, H., Liu, Z., Bian, Z., Li, Y., Huang, C.: A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 28, 9648 (2016)

    Google Scholar 

  109. Madhavan, V.E., Zimmermann, I., Roldán-Carmona, C., Grancini, G., Buffiere, M., Belaidi, A., Nazeeruddin, M.K.: Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Lett. 1, 1112 (2016)

    Google Scholar 

  110. Yang, I.S., Sohn, M.R., Sung, S.D., Kim, Y.J., Yoo, Y.J., Kim, J., Lee, W.I.: Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 32, 414 (2017)

    Google Scholar 

  111. Liu, J., Pathak, S.K., Sakai, N., Sheng, R., Bai, S., Wang, Z., Snaith, H.J.: Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter. Adv. Mater. Interfaces 3, 1600571 (2016)

    Google Scholar 

  112. Jung, M., Kim, Y.C., Jeon, N.J., Yang, W.S., Seo, J., Noh, J.H., Seok, S.I.: Thermal stability of CuSCN hole conductor-based perovskite solar cells. ChemSusChem 9, 2592 (2016)

    Google Scholar 

  113. Arora, N., Dar, M.I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S.M., Grätzel, M.: Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768 (2017)

    Google Scholar 

  114. Sun, W., Peng, H., Li, Y., Yan, W., Liu, Z., Bian, Z., Huang, C.: Solution-processed copper iodide as an inexpensive and effective anode buffer layer for polymer solar cells. J. Phys. Chem. C 118, 16806 (2014)

    Google Scholar 

  115. Tennakone, K., Kumara, G.R.R.A., Kumarasinghe, A.R., Wijayantha, K.G.U., Sirimanne, P.M.: A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10, 1689 (1995)

    Google Scholar 

  116. Taguchi, T., Zhang, X.-T., Sutanto, I., Tokuhiro, K.-I., Rao, T.N., Watanabe, H., Nakamori, T., Uragami, M., Fujishima, A.: Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chem. Commun. 2480 (2003)

  117. Yum, J.-H., Chen, P., Grätzel, M., Nazeeruddin, M.K.: Recent developments in solid-state dye-sensitized solar cells. ChemSusChem 1, 699 (2008)

    Google Scholar 

  118. Wagner, J.B., Wagner, C.: Electrical conductivity measurements on cuprous halides. J. Chem. Phys. 26, 1597 (1957)

    Google Scholar 

  119. Perera, V.P.S., Tennakone, K.: Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Sol. Energy Mater. Sol. C 79, 249 (2003)

    Google Scholar 

  120. Inudo, S., Miyake, M., Hirato, T.: Electrical properties of CuI films prepared by spin coating. Phys. Status Solidi A 210, 2395 (2013)

    Google Scholar 

  121. Christians, J.A., Fung, R.C.M., Kamat, P.V.: An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758 (2014)

    Google Scholar 

  122. Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Kim, J., Gil, B., Park, B.: Synergetic effect of double-step blocking layer for the perovskite solar cell. J. Appl. Phys. 122, 145106 (2017)

    Google Scholar 

  123. Hwang, T., Cho, D., Kim, J., Kim, J., Lee, S., Lee, B., Kim, K.H., Hong, S., Kim, C., Park, B.: Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy 25, 91 (2016)

    Google Scholar 

  124. Choi, H., Nahm, C., Kim, J., Moon, J., Nam, S., Jung, D.-R., Park, B.: The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr. Appl. Phys. 12, 737 (2012)

    Google Scholar 

  125. Kim, J., Choi, H., Nahm, C., Moon, J., Kim, C., Nam, S., Jung, D.-R., Park, B.: The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. J. Power Sources 196, 10526 (2011)

    Google Scholar 

  126. Sepalage, G.A., Meyer, S., Pascoe, A., Scully, A.D., Huang, F., Bach, U., Cheng, Y.-B., Spiccia, L.: Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of JV hysteresis. Adv. Funct. Mater. 25, 5650 (2015)

    Google Scholar 

  127. Chen, W.-Y., Deng, L.-L., Dai, S.-M., Wang, X., Tian, C.-B., Zhan, X.-X., Xie, S.-Y., Huang, R.-B., Zheng, L.-S.: Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 3, 19353 (2015)

    Google Scholar 

  128. Sun, W., Ye, S., Rao, H., Li, Y., Liu, Z., Xiao, L., Chen, Z., Bian, Z., Huang, C.: Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale 8, 15954 (2016)

    Google Scholar 

  129. Wang, H., Yu, Z., Jiang, X., Li, J., Cai, B., Yang, X., Sun, L.: Efficient and stable inverted planar perovskite solar cells employing CuI as hole-transporting layer prepared by solid–gas transformation. Energy Technol. 5, 1836 (2017)

    Google Scholar 

  130. Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945 (2012)

    Google Scholar 

  131. Hossain, M.I., Alharbi, F.H., Tabet, N.: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 120, 370 (2015)

    Google Scholar 

  132. Zuo, C., Ding, L.: Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11, 5528 (2015)

    Google Scholar 

  133. Chatterjee, S., Pal, A.J.: Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120, 1428 (2016)

    Google Scholar 

  134. Yu, W., Li, F., Wang, H., Alarousu, E., Chen, Y., Lin, B., Wang, L., Hedhili, M.N., Li, Y., Wu, K., Wang, X., Mohammed, O.F., Wu, T.: Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale 8, 6173 (2016)

    Google Scholar 

  135. Liu, C., Zhou, X., Chen, S., Zhao, X., Dai, S., Xu, B.: Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv. Sci. 6, 1801169 (2019)

    Google Scholar 

  136. Kim, C., Kim, J., Choi, H., Nahm, C., Kang, S., Lee, S., Lee, B., Park, B.: The effect of TiO2-coating layer on the performance in nanoporous ZnO-based dye-sensitized solar cells. J. Power Sources 232, 159 (2013)

    Google Scholar 

  137. Kim, J., Choi, H., Nahm, C., Kim, C., Nam, S., Kang, S., Jung, D.-R., Kim, J.I., Kang, J., Park, B.: The role of a TiCl4 treatment on the performance of CdS quantum-dot-sensitized solar cells. J. Power Sources 220, 108 (2012)

    Google Scholar 

  138. Kim, J.I., Kim, J., Lee, J., Jung, D.-R., Kim, H., Choi, H., Lee, S., Byun, S., Kang, S., Park, B.: Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res. Lett. 7, 482 (2012)

    Google Scholar 

  139. Jung, D.-R., Kim, J., Nam, S., Nahm, C., Choi, H., Kim, J.I., Lee, J., Kim, S., Park, B.: Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance. Appl. Phys. Lett. 99, 041906 (2011)

    Google Scholar 

  140. Jung, D.-R., Son, D., Kim, J., Kim, C., Park, B.: Highly luminescent surface-passivated ZnS:Mn nanoparticles by a simple one-step synthesis. Appl. Phys. Lett. 93, 163118 (2008)

    Google Scholar 

  141. Sun, W., Li, Y., Ye, S., Rao, H., Yan, W.-B., Peng, H.-T., Li, Y., Liu, Z., Wang, S., Chen, Z., Xiao, L., Bian, Z., Huang, C.: High-performance inverted planar heterojunction perovskite solar cells based on solution-processed CuOx hole transport layer. Nanoscale 8, 10806 (2016)

    Google Scholar 

  142. Rao, H., Ye, S., Sun, W., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Li, Y., Huang, C.: A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 27, 51 (2016)

    Google Scholar 

  143. Bandara, J., Yasomanee, J.P.: p-Type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semicond. Sci. Technol. 22, 20 (2007)

    Google Scholar 

  144. Nattestad, A., Zhang, X., Bach, U., Cheng, Y.: Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. J. Photonics Energy 1, 011103 (2011)

    Google Scholar 

  145. Ahmed, J., Blakely, C.K., Prakash, J., Bruno, S.R., Yu, M., Wu, Y., Poltavets, V.V.: Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J. Alloys Compd. 591, 275 (2014)

    Google Scholar 

  146. Nahm, C., Choi, H., Kim, J., Jung, D.-R., Kim, C., Moon, J., Lee, B., Park, B.: The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Appl. Phys. Lett. 99, 253107 (2011)

    Google Scholar 

  147. Wi, S., Park, J., Lee, S., Kim, J., Gil, B., Yun, A.J., Sung, Y.-E., Park, B., Kim, C.: Insights on the delithiation/lithiation reactions of LixMn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy 39, 371 (2017)

    Google Scholar 

  148. Xiong, D., Xu, Z., Zeng, X., Zhang, W., Chen, W., Xu, X., Wang, M., Cheng, Y.-B.: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Am. Chem. 22, 24760 (2012)

    Google Scholar 

  149. Xu, X., Cui, J., Han, J., Zhang, J., Zhang, Y., Luan, L., Alemu, G., Wang, Z., Shen, Y., Xiong, D., Chen, W., Wei, Z., Yang, S., Hu, B., Cheng, Y., Wang, M.: Near field enhanced photocurrent generation in p-type dye-sensitized solar cells. Sci. Rep. 4, 3961 (2014)

    Google Scholar 

  150. Powar, S., Xiong, D., Daeneke, T., Ma, M.T., Gupta, A., Lee, G., Makuta, S., Tachibana, Y., Chen, W., Spiccia, L., Cheng, Y.-B., Götz, G., Bäuerle, P., Bach, U.: Improved photovoltages for p-type dye-sensitized solar cells using CuCrO2 nanoparticles. J. Phys. Chem. C 118, 16375 (2014)

    Google Scholar 

  151. Daniel, U., Anamaria, D., Sebarchievicia, I., Miclau, M.: Photovoltaic performance of Co-doped CuCrO2 for p-type dye-sensitized solar cells application. Energy Procedia 112, 497 (2017)

    Google Scholar 

  152. Wang, J., Lee, Y.-J., Hsu, J.W.P.: Sub-10 nm copper chromium oxide nanocrystals as a solution processed p-type hole transport layer for organic photovoltaics. J. Mater. Chem. C 4, 3607 (2016)

    Google Scholar 

  153. Wang, J., Daunis, T.B., Cheng, L., Zhang, B., Kim, J., Hsu, J.W.P.: Combustion synthesis of p-type transparent conducting CuCrO2+x and Cu:CrOx thin films at 180 °C. ACS Appl. Mater. Interfaces 10, 3732 (2018)

    Google Scholar 

  154. Renaud, A., Chavillon, B., Pleux, L.L., Pellegrin, Y., Blart, E., Boujtita, M., Pauporté, T., Cario, L., Jobic, S., Odobel, F.: CuGaO2: a promising alternative for NiO in p-type dye solar cells. J. Mater. Chem. 22, 14353 (2012)

    Google Scholar 

  155. Xu, Z., Xiong, D., Wang, H., Zhang, W., Zeng, X., Ming, L., Chen, W., Xu, X., Cui, J., Wang, M., Powar, S., Bach, U., Cheng, Y.-B.: Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates. J. Mater. Chem. A 2, 2968 (2014)

    Google Scholar 

  156. Wang, J., Ibarra, V., Barrera, D., Xu, L., Lee, Y.-J., Hsu, J.W.P.: Solution synthesized p-type copper gallium oxide nanoplates as hole transport layer for organic photovoltaic devices. J. Phys. Chem. Lett. 6, 1071 (2015)

    Google Scholar 

  157. Gao, S., Zhao, Y., Gou, P., Chen, N., Xie, Y.: Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity. Nanotechnology 14, 538 (2003)

    Google Scholar 

  158. Igbari, F., Li, M., Hu, Y., Wang, Z.-K., Liao, L.-S.: A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 4, 1326 (2016)

    Google Scholar 

  159. Xiong, D., Zeng, X., Zhang, W., Wang, H., Zhao, X., Chen, W., Cheng, Y.-B.: Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 53, 4106 (2014)

    Google Scholar 

  160. Park, K., Kim, J., Wi, S., Lee, S., Hwang, T., Kim, J., Kang, J., Choi, J.-P., Nam, S., Park, B.: Optimum morphology of mixed-olivine mesocrystals for a Li-ion battery. Inorg. Chem. 57, 5999 (2018)

    Google Scholar 

  161. Barnabé, A., Thimont, Y., Lalanne, M., Presmanesa, L., Tailhades, P.: p-Type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering. J. Mater. Chem. C 3, 6012 (2015)

    Google Scholar 

  162. Sánchez-Alarcón, R.I., Oropeza-Rosario, G., Gutierrez-Villalobos, A., Muro-López, M.A., Martínez-Martínez, R., Zaleta-Alejandre, E., Falcony, C., Alarcón-Flores, G., Fragoso, E., Hernández-Silva, O., Perez-Cappe, E., Laffita, Y.M., Aguilar-Frutis, M.: Ultrasonic spray-pyrolyzed CuCrO2 thin films. J. Phys. D Appl. Phys. 49, 175102 (2016)

    Google Scholar 

  163. Nie, S., Liu, A., Meng, Y., Shin, B., Liu, G., Shan, F.: Solution-processed ternary p-type CuCrO2 semiconductor thin films and their application in transistors. J. Mater. Chem. C 6, 1393 (2018)

    Google Scholar 

  164. Dunlap-Shohl, W.A., Daunis, T.B., Wang, X., Wang, J., Zhang, B., Barrera, D., Yan, Y., Hsu, J.W.P., Mitzi, D.B.: Room-temperature fabrication of a delafossite CuCrO2 hole transport layer for perovskite solar cells. J. Mater. Chem. A 6, 469 (2018)

    Google Scholar 

  165. Qin, P.-L., He, Q., Chen, C., Zheng, X.-L., Yang, G., Tao, H., Xiong, L.-B., Xiong, L., Li, G., Fang, G.-J.: High-performance rigid and flexible perovskite solar cells with low-temperature solution-processable binary metal oxide hole-transporting materials. Solar RRL 1, 1700058 (2017)

    Google Scholar 

  166. Zhang, H., Wang, H., Zhu, H., Chueh, C.-C., Chen, W., Yang, S., Jen, A.K.-Y.: Low-temperature solution-processed CuCrO2 hole-transporting layer for efficient and photostable perovskite solar cells. Adv. Energy Mater. 8, 1702762 (2018)

    Google Scholar 

  167. Jeong, S., Seo, S., Shin, H.: p-Type CuCrO2 particulate films as the hole transporting layer for CH3NH3PbI3 perovskite solar cells. RSC Adv. 8, 27956 (2018)

    Google Scholar 

  168. Akin, S., Liu, Y., Dar, M.I., Zakeeruddin, S.M., Grätzel, M., Turand, S., Sonmezoglu, S.: Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. J. Mater. Chem. A 6, 20327 (2018)

    Google Scholar 

  169. Zhang, H., Wang, H., Chen, W., Jen, A.K.-Y.: CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv. Mater. 29, 1604984 (2017)

    Google Scholar 

  170. Srinivasan, R., Chavillon, B., Doussier-Brochard, C., Cario, L., Paris, M., Gautron, E., Deniard, P., Odobel, F., Jobic, S.: Tuning the size and color of the p-type wide band gap delafossite semiconductor CuGaO2 with ethylene glycol assisted hydrothermal synthesis. J. Mater. Chem. 18, 5647 (2008)

    Google Scholar 

  171. Yu, M., Draskovic, T.I., Wu, Y.: Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. Inorg. Chem. 53, 5845 (2014)

    Google Scholar 

  172. Chen, Y., Yang, Z., Wang, S., Zheng, X., Wu, Y., Yuan, N., Zhang, W.-H., Liu, S.F.: Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells. Adv. Mater. 30, 1805660 (2018)

    Google Scholar 

  173. Papadas, I.T., Savva, A., Ioakeimidis, A., Eleftheriou, P., Armatas, G.S., Choulis, S.A.: Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells. Mater. Today Energy 8, 57 (2018)

    Google Scholar 

  174. Rao, H., Sun, W., Ye, S., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Huang, C.: Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. Nano Energy 27, 51 (2016)

    Google Scholar 

  175. Lv, M., Zhu, J., Huang, Y., Li, Y., Shao, Z., Xu, Y., Dai, S.: Colloidal CuInS2 quantum dots as inorganic hole-transporting material in perovskite solar cells. ACS Appl. Mater. Interfaces 7, 17482 (2015)

    Google Scholar 

  176. Khanzada, L.S., Levchuk, I., Hou, Y., Azimi, H., Osvet, A., Ahmad, R., Brandl, M., Herre, P., Distaso, M., Hock, R., Peukert, W., Batentschuk, M., Brabec, C.J.: Effective ligand engineering of the Cu2ZnSnS4 nanocrystal surface for increasing hole transport efficiency in perovskite solar cells. Adv. Funct. Mater. 26, 8300 (2016)

    Google Scholar 

  177. Patel, S.B., Patel, A.H., Gohel, J.V.: A novel and cost effective CZTS hole transport material applied in perovskite solar cells. CrystEngComm 20, 7677 (2018)

    Google Scholar 

  178. Ge, J., Yan, Y.: Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells. J. Mater. Chem. C 5, 6406 (2017)

    Google Scholar 

  179. Ge, J., Grice, C.R., Yan, Y.: Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells. J. Mater. Chem. A 5, 2920 (2017)

    Google Scholar 

  180. Kim, J., Shin, B.: Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells. Electron. Mater. Lett. 13, 373 (2017)

    Google Scholar 

  181. Qin, P., He, Q., Yang, G., Yua, X., Xiong, L., Fang, G.: Metal ions diffusion at heterojunction chromium oxide/CH3NH3PbI3 interface on the stability of perovskite solar cells. Surf. Interfaces 10, 93 (2018)

    Google Scholar 

  182. Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013)

    Google Scholar 

  183. Yao, X., Qi, J., Xu, W., Jiang, X., Gong, X., Cao, Y.: Cesium-doped vanadium oxide as the hole extraction layer for efficient perovskite solar cells. ACS Omega 3, 1117 (2018)

    Google Scholar 

  184. Li, D., Tong, C., Ji, W., Fu, Z., Wan, Z., Huang, Q., Ming, Y., Mei, A., Hu, Y., Rong, Y., Han, H.: Vanadium oxide post-treatment for enhanced photovoltage of printable perovskite solar cells. ACS Sustain. Chem. Eng. 7, 2619 (2019)

    Google Scholar 

  185. Shalan, A.E., Oshikiri, T., Narra, S., Elshanawany, M.M., Ueno, K., Wu, H.-P., Nakamura, K., Shi, X., Diau, E.W.-G., Misawa, H.: Cobalt oxide (CoOx) as an efficient hole-extracting layer for high-performance inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 8, 33592 (2016)

    Google Scholar 

  186. Bashir, A., Shukla, A., Lew, J.H., Shukla, S., Bruno, A., Gupta, D., Baikie, T., Patidar, R., Akhter, Z., Priyadarshi, A., Mathews, N., Mhaisalkar, S.G.: Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. ACS Appl. Mater. Interfaces 8, 33592 (2018)

    Google Scholar 

  187. Chiang, C.-W., Chen, C.-C., Nazeeruddin, M.K., Wu, C.-G.: A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells. J. Mater. Chem. A 6, 13751 (2018)

    Google Scholar 

  188. Tseng, Z.-L., Chen, L.-C., Chiang, C.-H., Chang, S.-H., Chen, C.-C., Wu, C.-G.: Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Sol. Energy 139, 484 (2016)

    Google Scholar 

  189. Im, K., Heo, J.H., Im, S.H., Kim, J.S.: Scalable synthesis of Ti-doped MoO2 nanoparticle-hole-transporting material with high moisture stability for CH3NH3PbI3 perovskite solar cells. Chem. Eng. J. 330, 698 (2017)

    Google Scholar 

  190. Matsui, T., Yamamoto, T., Nishihara, T., Morisawa, R., Yokoyama, T., Sekiguchi, T., Negami, T.: Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85 °C/85% 1000 h stability. Adv. Mater. 31, 1806823 (2019)

    Google Scholar 

  191. Christians, J.A., Schulz, P., Tinkham, J.S., Schloemer, T.H., Harvey, S.P., Villers, B.J.T., Sellinger, A., Berry, J.J., Luther, J.M.: Tailored interfaces of unencapsulated perovskite solar cells for > 1,000 hour operational stability. Nat. Energy 3, 68 (2018)

    Google Scholar 

  192. Sanehira, E.M., Villers, B.J.T., Schulz, P., Reese, M.O., Ferrere, S., Zhu, K., Lin, L.Y., Berry, J.J., Luther, J.M.: Influence of electrode interfaces on the stability of perovskite solar cells: reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 1, 38 (2016)

    Google Scholar 

  193. Domanski, K., Alharbi, E.A., Hagfeldt, A., Grätzel, M., Tress, W.: Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61 (2018)

    Google Scholar 

  194. Cho, D., Hwang, T., Cho, D.-G., Park, B., Hong, S.: Photoconductive noise microscopy revealing quantitative effect of localized electronic traps on the perovskite-based solar cell performance. Nano Energy 43, 29 (2018)

    Google Scholar 

  195. Cheng, M., Li, Y., Safdari, M., Chen, C., Liu, P., Kloo, L., Sun, L.: Efficient perovskite solar cells based on a solution processable nickel(II) phthalocyanine and vanadium oxide integrated hole transport layer. Adv. Energy Mater. 7, 1602556 (2017)

    Google Scholar 

  196. Kim, G.-W., Kang, G., Choi, K., Choi, H., Park, T.: Solution processable inorganic–organic double-layered hole transport layer for highly stable planar perovskite solar cells. Adv. Energy Mater. 8, 1801386 (2018)

    Google Scholar 

  197. Savva, A., Papadas, I.T., Tsikritzis, D., Ioakeimidis, A., Galatopoulos, F., Kapnisis, K., Fuhrer, R., Hartmeier, B., Oszajca, M.F., Luechinger, N.A., Kennou, S., Armatas, G.S., Choulis, S.A.: Inverted perovskite photovoltaics using flame spray pyrolysis solution based CuAlO2/Cu–O hole-selective contact. ACS Appl. Energy Mater. 2, 2276 (2019)

    Google Scholar 

  198. Cao, J., Yu, H., Zhou, S., Qin, M., Lau, T.-K., Lu, X., Zhao, N., Wong, C.-P.: Low-temperature solution-processed NiOx films for air-stable perovskite solar cells. J. Mater. Chem. A 5, 11071 (2017)

    Google Scholar 

  199. Mali, S.S., Patil, J.V., Kim, H., Luque, R., Hong, C.K.: Highly efficient thermally stable perovskite solar cells via Cs:NiOx/CuSCN double-inorganic hole extraction layer interface engineering. Mater. Today 26, 8 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20183010014470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungwoo Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, B., Yun, A.J., Lee, Y. et al. Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Electron. Mater. Lett. 15, 505–524 (2019). https://doi.org/10.1007/s13391-019-00163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00163-6

Keywords

Navigation