Electronic Materials Letters

, Volume 15, Issue 3, pp 368–376 | Cite as

Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity

  • Jun Min Suh
  • Young-Seok Shim
  • Ki Chang Kwon
  • Jong-Myeong Jeon
  • Tae Hyung Lee
  • Mohammadreza Shokouhimehr
  • Ho Won JangEmail author
Original Article - Nanomaterials


To date, chemoresistive gas sensors based on metal oxide semiconductors (MOS) have been the most attractive sensor types for the practical application. However, with the emerging concept of Internet of Everything, high operating temperatures over 300 °C of the gas sensors based on MOS must be reduced to achieve low power consumption and overcome a limited battery capacity of mobile devices. The 2-dimensional materials like MoS2 have been, therefore, one of the most recently studied materials for gas sensors with capability of operation at significantly lower temperatures. However, lacking selectivity toward various target gas species limited their application to gas sensors. Herein, we investigated the effects of noble metals (Pd and Au) decoration on the gas sensing properties of MoS2 thin films. Due to the electronic sensitization of the noble metal catalysts and the formation of Pd hydride, overall gas responses and selectivity were significantly improved toward tests gas species. These results provide clear understandings on the effects of the surface noble metal catalysts on gas sensing properties of MoS2.

Graphical abstract


Molybdenum disulfide Gas sensor Noble metal catalyst Selectivity NO2 



This work was financially supported by the Basic Science Research Program (2017R1A2B3009135), Future Material Discovery Program (2016M3D1A1027666), and the Nano·Material Technology Development Program (2016M3A7B4910) through the National Research Foundation of Korea, and the International Energy Joint R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (20168510011350). J. M. Suh acknowledges the Global Ph.D. Fellowship Program through the National Research Foundation of Korea funded by the Ministry of Education (2015H1A2A1033701).


  1. 1.
    Sundell, J.: On the history of indoor air quality and health. Indoor Air 14(s7), 51–58 (2004)CrossRefGoogle Scholar
  2. 2.
    Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A., Phanichphant, S.: Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators, B 160(1), 580–591 (2011)CrossRefGoogle Scholar
  3. 3.
    Yamazoe, N., Shimanoe, K.: New perspectives of gas sensor technology. Sens. Actuators, B 138(1), 100–107 (2009)CrossRefGoogle Scholar
  4. 4.
    Moos, R., Sahner, K., Fleischer, M., Guth, U., Barsan, N., Weimar, U.: Solid state gas sensor research in Germany—a status report. Sensors 9, 4323 (2009)CrossRefGoogle Scholar
  5. 5.
    Jeon, J.-M., Shim, Y.-S., Han, S.D., Kim, D.H., Kim, Y.H., Kang, C.-Y., Kim, J.-S., Kim, M., Jang, H.W.: Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases. J. Mater. Chem. A 3, 17939 (2015)CrossRefGoogle Scholar
  6. 6.
    Shim, Y.-S., Kim, D.H., Jeong, H.Y., Kim, Y.H., Nahm, S.H., Kang, C.-Y., Kim, J.-S., Lee, W., Jang, H.W.: Utilization of both-side metal decoration in close-packed SnO2 nanodome arrays for ultrasensitive gas sensing. Sens. Actuators, B 213, 314 (2015)CrossRefGoogle Scholar
  7. 7.
    Shim, Y.-S., Moon, H.G., Kim, D.H., Zhang, L., Yoon, S.-J., Yoon, Y.S., Kang, C.-Y., Jang, H.W.: Au-decorated WO3 cross-linked nanodomes for ultrahigh sensitive and selective sensing of NO2 and C2H5OH. RSC Adv. 3, 10452 (2013)CrossRefGoogle Scholar
  8. 8.
    Sun, G.-J., Lee, J.K., Lee, W.I., Dwivedi, R.P., Lee, C., Ko, T.: Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors. Electron. Mater. Lett. 13(3), 260–269 (2017)CrossRefGoogle Scholar
  9. 9.
    Baranov, A., Spirjakin, D., Akbari, S., Somov, A.: Optimization of power consumption for gas sensor nodes: a survey. Sens. Actuators, A 233, 279 (2015)CrossRefGoogle Scholar
  10. 10.
    Lee, K., Gatensby, R., McEvoy, N., Hallam, T., Duesberg, G.S.: High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, X., Ma, T., Pinna, N., Zhang, J.: Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1702168 (2017)CrossRefGoogle Scholar
  12. 12.
    Kim, Y.H., Kim, S.J., Kim, Y.-J., Shim, Y.-S., Kim, S.Y., Hong, B.H., Jang, H.W.: Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9(10), 10453–10460 (2015)CrossRefGoogle Scholar
  13. 13.
    Kim, Y.H., Park, J.S., Choi, Y.-R., Park, S.Y., Lee, S.Y., Sohn, W., Shim, Y.-S., Lee, J.-H., Park, C.R., Choi, Y.S., Hong, B.H., Lee, J.H., Lee, W.H., Lee, D., Jang, H.W.: Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels. J. Mater. Chem. A 5(36), 19116–19125 (2017)CrossRefGoogle Scholar
  14. 14.
    Long, H., Harley-Trochimczyk, A., Pham, T., Tang, Z., Shi, T., Zettl, A., Carraro, C., Worsley, M.A., Maboudian, R.: High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26, 5158–5165 (2016)CrossRefGoogle Scholar
  15. 15.
    Yang, S., Jiang, C., Wei, S.: Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017)CrossRefGoogle Scholar
  16. 16.
    Agrawal, A.V., Kumar, R., Venkatesan, S., Zakhidov, A., Zhu, Z., Bao, J., Kumar, M., Kumar, M.: Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Appl. Phys. Lett. 111, 093102 (2017)CrossRefGoogle Scholar
  17. 17.
    Park, S.Y., Kim, Y.H., Lee, S.Y., Sohn, W., Lee, J.E., Kim, D.H., Shim, Y.-S., Kwon, K.C., Choi, K.S., Yoo, H.J., Suh, J.M., Ko, M., Lee, J.-H., Lee, M.J., Kim, S.Y., Lee, M.H., Jang, H.W.: Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6(12), 5016–5024 (2018)CrossRefGoogle Scholar
  18. 18.
    Park, S.Y., Lee, J.E., Kim, Y.H., Kim, J.J., Shim, Y.-S., Kim, S.Y., Lee, M.H., Jang, H.W.: Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sens. Actuators, B 258, 775–782 (2018)CrossRefGoogle Scholar
  19. 19.
    Cho, S.-Y., Kim, S.J., Lee, Y., Kim, J.-S., Jung, W.-B., Yoo, H.-W., Kim, J., Jung, H.-T.: Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9, 9314–9321 (2015)CrossRefGoogle Scholar
  20. 20.
    Shim, Y.-S., Kwon, K.C., Suh, J.M., Choi, K.S., Song, Y.G., Sohn, W., Choi, S., Hong, K., Jeon, J.-M., Hong, S.-P., Kim, S., Kim, S.Y., Kang, C.-Y., Jang, H.W.: Synthesis of numerous edge sites in MoS2 via SiO2 nanorods platform for highly sensitive gas sensor. ACS Appl. Mater. Int. 10(37), 31594–31602 (2018)CrossRefGoogle Scholar
  21. 21.
    Kwon, K.C., Choi, S., Hong, K., Moon, C.W., Shim, Y.-S., Kim, D.H., Kim, T., Sohn, W., Jeon, J.-M., Lee, C.-H., Nam, K.T., Han, S., Kim, S.Y., Jang, H.W.: Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 9(7), 2240–2248 (2016)CrossRefGoogle Scholar
  22. 22.
    Kwon, K.C., Choi, S., Hong, K., Andoshe, D.M., Suh, J.M., Kim, C., Choi, K.S., Oh, J.H., Kim, S.Y., Jang, H.W.: Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7(2), 272–279 (2017)CrossRefGoogle Scholar
  23. 23.
    Kwon, K.C., Choi, S., Lee, J., Hong, K., Sohn, W., Andoshe, D.M., Choi, K.S., Kim, Y., Han, S., Kim, S.Y., Jang, H.W.: Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J. Mater. Chem. A 5(30), 15534–15542 (2017)CrossRefGoogle Scholar
  24. 24.
    Kang, S.B., Kwon, K.C., Choi, K.S., Lee, R., Hong, K., Suh, J.M., Im, M.J., Sanger, A., Choi, I.Y., Kim, S.Y., Shin, J.C., Jang, H.W., Choi, K.J.: Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells. Nano Energy 50, 649–658 (2018)CrossRefGoogle Scholar
  25. 25.
    Andoshe, D.M., Jin, G., Lee, C.-S., Kim, C., Kwon, K.C., Choi, S., Sohn, W., Moon, C.W., Lee, S.H., Suh, J.M., Kang, S., Park, J., Heo, H., Kim, J.K., Han, S., Jo, M.-H., Jang, H.W.: Directly assembled 3D molybdenum disulfide on silicon wafer for efficient photoelectrochemical water reduction. Adv. Sustain. Syst. 2(3), 1700142 (2018)CrossRefGoogle Scholar
  26. 26.
    Suh, J.M., Sohn, W., Shim, Y.-S., Choi, J.-S., Song, Y.G., Kim, T.L., Jeon, J.-M., Kwon, K.C., Choi, K.S., Kang, C.-Y., Byun, H.-G., Jang, H.W.: p–p Heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl. Mater. Int. 10(1), 1050–1058 (2017)CrossRefGoogle Scholar
  27. 27.
    Suh, J.M., Shim, Y.-S., Kim, D.H., Sohn, W., Jung, Y., Lee, S.Y., Choi, S., Kim, Y.H., Jeon, J.-M., Hong, K., Kwon, K.C., Park, S.Y., Kim, C., Lee, J.-H., Kang, C.-Y., Jang, H.W.: Synergetically selective toluene sensing in hematite-decorated nickel oxide nanocorals. Adv. Mater. Technol. 2(3), 1600259 (2017)CrossRefGoogle Scholar
  28. 28.
    Kwon, J.-Y., Yoon, T.-S., Kim, K.-B.: Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J. Appl. Phys. 93(6), 3270–3278 (2003)CrossRefGoogle Scholar
  29. 29.
    Jeon, J.-M., Kim, T.L., Shim, Y.-S., Choi, Y.R., Choi, S., Lee, S., Kwon, K.C., Hong, S.-H., Kim, Y.-W., Kim, S.Y., Kim, M., Jang, H.W.: Microscopic evidence for strong interaction between Pd and graphene oxide that results in metal-decoration-induced reduction of graphene oxide. Adv. Mater. 29(15), 1605929 (2017)CrossRefGoogle Scholar
  30. 30.
    McDonnell, S., Addou, R., Buie, C., Wallace, R.M., Hinkle, C.L.: Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880 (2014)CrossRefGoogle Scholar
  31. 31.
    Cho, B., Hahm, M.G., Choi, M., Yoon, J., Kim, A.R., Lee, Y.-J., Park, S.-G., Kwon, J.-D., Kim, C.S., Song, M., Jeong, Y., Nam, K.-S., Lee, S., Yoo, T.J., Kang, C.G., Lee, B.H., Ko, H.C., Ajayan, P.M., Kim, D.-H.: Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015)CrossRefGoogle Scholar
  32. 32.
    Baek, D.H., Kim, J.: MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuators, B 250, 686–691 (2017)CrossRefGoogle Scholar
  33. 33.
    Kong, J., Chapline, M.G., Dai, H.: Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 13(18), 1384–1386 (2001)CrossRefGoogle Scholar
  34. 34.
    Kwak, S., Shim, Y.-S., Yoo, Y.K., Lee, J.-H., Kim, I., Kim, J., Lee, K.H., Lee, J.H.: MEMS-Based gas sensor using PdO-decorated TiO2 thin film for highly sensitive and selective H2 detection with low power consumption. Electron. Mater. Lett. 14(3), 305–313 (2018)CrossRefGoogle Scholar
  35. 35.
    Ko, J.Y., Song, J.-G., Kim, Y., Choi, T., Shin, S., Lee, C.W., Lee, K., Koo, J., Lee, H., Kim, J., Lee, T., Park, J., Kim, H.: Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016)CrossRefGoogle Scholar
  36. 36.
    Yan, H., Song, P., Zhang, S., Zhang, J., Yang, Z., Wang, Q.: A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 42, 9327–9331 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Materials Science and Engineering, Advanced Battery Center, KAIST Institute for the NanocenturyKAISTDaejeonRepublic of Korea
  3. 3.SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, College of Optoelectronic EngineeringShenzen UniversityShenzenChina
  4. 4.Fundamental Technology Group, Central R&D InstituteSamsung Electro-Mechanics Co.SuwonRepublic of Korea

Personalised recommendations