Skip to main content
Log in

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Nanostructured Ni doped Bi2S3 (Bi2−xNixS3, 0 ≤ x ≤ 0.07) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of Bi2S3 was decreased by adding Ni atoms, which shows a minimum value of 2.35 × 10−3 Ω m at 300 °C for Bi1.99Ni0.01S3 sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density Bi2S3. The thermal conductivity of Bi2−xNixS3 ranges from 0.31 to 0.52 W/m K in the temperature range of 27 °C (RT) to 300 °C with the lowest κ values of Bi2S3 compared to the previous works. A maximum ZT value of 0.13 at 300 °C was achieved for Bi1.99Ni0.01S3 sample, which is about 2.6 times higher than (0.05) of Bi2S3 sample. This work show an optimization pathway to improve thermoelectric performance of Bi2S3 through Ni doping and introduction of porosity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This figure is adapted from [27]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008)

    Article  Google Scholar 

  2. Sanz-Bobi, M.A., Palacios, R., Aguilera, A.: Potential use of small waste heat sources based on thermoelectricity: application to an overhead projector and a battery charger. In: Proceedings of 5th ETS, pp. 58–65 (1999)

  3. Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A., Elsheikh, M.H.: Recent advances on Mg2Si1−xSnx materials for thermoelectric generation. Renew. Sustain. Energy Rev. 37, 569–584 (2014)

    Article  Google Scholar 

  4. Ovik, R., Long, B.D., Barma, M.C., Riaz, M., Sabri, M.F.M., Said, S.M., Saidur, R.: A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 64, 635–659 (2016)

    Article  Google Scholar 

  5. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)

    Article  Google Scholar 

  6. Visnow, E., Heinrich, C.P., Schmitz, A., de Boor, J., Leidich, P., Klobes, B., Hermann, R.P., Müller, W.E., Tremel, W.: On the true indium content of In-filled skutterudites. Inorg. Chem. 54(16), 7818–7827 (2015)

    Article  Google Scholar 

  7. Yang, J., Stabler, F.R.: Automotive applications of thermoelectric materials. J. Electron. Mater. 38(7), 1245–1251 (2009)

    Article  Google Scholar 

  8. Rowe, D.M.: Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  9. Rowe, D.M., Bhandari, C.M.: Modern Thermoelectrics. Prentice Hall, Upper Saddle River (1983)

    Google Scholar 

  10. Amatya, R., Ram, R.J.: Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 41(6), 1011–1019 (2012)

    Article  Google Scholar 

  11. Chen, K.: Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds. Queen Mary University of London, United Kingdom (2016)

    Google Scholar 

  12. Mizoguchi, H., Hosono, H., Ueda, N., Kawazoe, H.: Preparation and electrical properties of Bi2S3 whiskers. J. Appl. Phys. 78(2), 1376–1378 (1995)

    Article  Google Scholar 

  13. Zhao, L.D., Zhang, B.P., Liu, W.S., Zhang, H.L., Li, J.F.: Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J. Solid State Chem. 181(12), 3278–3282 (2008)

    Article  Google Scholar 

  14. Ge, Z.H., Zhang, B.P., Yu, Z.X., Li, J.F.: Effect of spark plasma sintering temperature on thermoelectric properties of Bi2S3 polycrystal. J. Mater. Res. 26(21), 2711–2718 (2011)

    Article  Google Scholar 

  15. Yu, Y.Q., Zhang, B.P., Ge, Z.H., Shang, P.P., Chen, Y.X.: Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Mater. Chem. Phys. 131(1), 216–222 (2011)

    Article  Google Scholar 

  16. Ge, Z.H., Zhang, B.P., Liu, Y., Li, J.F.: Nanostructured Bi2− xCu xS3 bulk materials with enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 14(13), 4475–4481 (2012)

    Article  Google Scholar 

  17. Kawamoto, Y., Iwasaki, H.: Thermoelectric properties of (Bi1−xSbx)2S3 with orthorhombics structure. J. Electron. Mater. 43(6), 1475–1479 (2014)

    Article  Google Scholar 

  18. Zhang, L.J., Zhang, B.P., Ge, Z.H., Han, C.G.: Fabrication and properties of Bi2S3−xSex thermoelectric polycrystals. Solid State Commun. 162, 48–52 (2013)

    Article  Google Scholar 

  19. Sterzel, H.J.: Patent, in WO2006/089938 A1 (2006)

  20. Du, X., Shi, R., Ma, Y., Cai, F., Wang, X., Yuan, Z.: Enhanced thermoelectric performance of n-type Bi2S3 with added ZnO for power generation. RSC Adv. 5(39), 31004–31009 (2015)

    Article  Google Scholar 

  21. Biswas, K., Zhao, L.D., Kanatzidis, M.G.: Tellurium-free thermoelectric: the anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2(6), 634–638 (2012)

    Article  Google Scholar 

  22. Du, X., Cai, F., Wang, X.: Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. J. Alloy. Compd. 587, 6–9 (2014)

    Article  Google Scholar 

  23. Ge, Z.H., Qin, P., He, D.S., Chong, X., Feng, D., Ji, Y.H., Feng, J., He, J.: Highly enhanced thermoelectric properties of Bi/Bi2S3 nanocomposites. ACS Appl. Mater. Interfaces 9(5), 4828–4834 (2017)

    Article  Google Scholar 

  24. Janghorban, K., Kirkaldy, J.S., Weatherly, G.C.: The Hume-Rothery size rule and double-well microstructures in gold–nickel. J. Phys. Condens. Matter 13(38), 8661 (2001)

    Article  Google Scholar 

  25. Chen, Z.G., Han, G., Yang, L., Cheng, L., Zou, J.: Nanostructured thermoelectric materials: current research and future challenge. Progress Nat. Sci. Mater. Int. 22(6), 535–549 (2012)

    Article  Google Scholar 

  26. Szczech, J.R., Higgins, J.M., Jin, S.: Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037–4055 (2011)

    Article  Google Scholar 

  27. Jung, S.J., Kim, J.H., Kim, D.I., Kim, S.K., Park, H.H., Kim, J.S., Hyun, D.B., Baek, S.H.: Strain-assisted, low-temperature synthesis of high-performance thermoelectric materials. Phys. Chem. Chem. Phys. 16(8), 3529–3533 (2014)

    Article  Google Scholar 

  28. Zhang, Q., Zhang, Q., Chen, S., Liu, W., Lukas, K., Yan, X., Wang, H., Wang, D., Opeil, C., Chen, G., Ren, Z.: Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy 1(1), 183–189 (2012)

    Article  Google Scholar 

  29. Petříček, V., Dušek, M., Palatinus, L.: Crystallographic computing system JANA2006: general features. Zeitschrift für Kristallographie-Crystalline Materials 229, 345–352 (2014)

    Google Scholar 

  30. Vegard, L.: Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik 5(1), 17–26 (1921)

    Article  Google Scholar 

  31. Pearson, G.L., Bardeen, J.: Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys. Rev. 75(5), 865 (1949)

    Article  Google Scholar 

  32. Ge, Z.H., Zhang, B.P., Yu, Y.Q., Shang, P.P.: Fabrication and properties of Bi2−xAg3xS3 thermoelectric polycrystals. J. Alloy. Compd. 514, 205–209 (2012)

    Article  Google Scholar 

  33. Lee, H., Vashaee, D., Wang, D.Z., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107(9), 094308 (2010)

    Article  Google Scholar 

  34. Du, Z., Zhu, T., Chen, Y., He, J., Gao, H., Jiang, G., Tritt, T.M., Zhao, X.: Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J. Mater. Chem. 22(14), 6838–6844 (2012)

    Article  Google Scholar 

  35. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)

    Article  Google Scholar 

  36. Goldsmid, H.J., Penn, A.W.: Boundary scattering of phonons in solid solutions. Phys. Lett. A 27(8), 523–524 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial support from University of Malaya through University Malaya Research Grant (UMRG) under the project RP032A-15AET, the Postgraduate Research Grants (PPP) under the project PG136/2015A and the Fundamental Research Grant Scheme (Grant No. FP064-2016). The authors also would like to thank Prof. Masatoshi Takeda from Nagaoka University of Technology for the discussion and provision of the thermal conductivity measurements in his lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhana Mohd Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitriani, F., Said, S.M., Rozali, S. et al. Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds. Electron. Mater. Lett. 14, 689–699 (2018). https://doi.org/10.1007/s13391-018-0072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0072-8

Keywords

Navigation