Skip to main content
Log in

Interfacial void segregation of Cl in Cu-Sn micro-connects

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A scanning transmission electron microscopy and an energy dispersive X-ray analysis of one non-annealed and one annealed sample (423 K for 4 hours) was performed. The results showed small and large voids appearing within the non-annealed and annealed samples respectively. In addition, chlorine segregated from the bulk into the voids. Ab initio calculations determined the formation energies for dilute solutions of chlorine and vacancies in Cu, Cu3Sn and Cu6Sn5. Results suggest that dilute solutions energetically favor vacancies, indicating a low chlorine solubility and a driving force for segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. Kim, J. Yu, and S. H. Kim, Acta Mater. 57, 5001 (2009).

    Article  Google Scholar 

  2. T. Chiu, K. Zeng, R. Stierman, D. Edwards, T. Instruments, and O. Kawasaki, in Electron. Components Technol. Conf. (IEEE, Las Vegas, 2004), pp. 1256–1262.

  3. Z. Mei, M. Ahmad, M. Hu, and G. Ramakrishna, in Electron. Components Technol. Conf. (IEEE, San Jose, CA, 2005), pp. 415–420.

  4. P. Borgesen, L. Yin, P. Kondos, D. W. Henderson, G. Servis, J. Therriault, J. Wang, and K. Srihari, in Electron. Components Technol. Conf. (IEEE, 2007), pp. 136–146.

  5. K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K. N. Tu, J. Appl. Phys. 97, 24508 (2005).

    Article  Google Scholar 

  6. G. Ross, V. Vuorinen, and M. Paulasto-Kröckel, J. Alloys Compd. 677, 127 (2016).

    Article  Google Scholar 

  7. G. Ross, V. Vuorinen, and M. Paulasto-Kröckel, in Electron. Components Technol. Conf. (IEEE, San Diego, CA, 2015), pp. 2193–2199.

  8. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D. W. Henderson, E. J. Cotts, and N. Dimitrov, J. Appl. Electrochem. 38, 1695 (2008).

    Article  Google Scholar 

  9. F. Wafula, Y. Liu, L. Yin, P. Borgesen, E. J. Cotts, and N. Dimitrov, J. Appl. Electrochem. 41, 469 (2011).

    Article  Google Scholar 

  10. H. Li, R. An, C. Wang, Y. Tian, and Z. Jiang, Mater. Lett. 144, 97 (2015).

    Article  Google Scholar 

  11. M. Stangl, J. Acker, S. Oswald, M. Uhlemann, T. Gemming, S. Baunack, and K. Wetzig, Microelectron. Eng. 84, 54 (2007).

    Article  Google Scholar 

  12. S.-C. Chang, J.-M. Shieh, B.-T. Dai, M.-S. Feng, and Y.-H. Li, J. Electrochem. Soc. 149, G535 (2002).

    Article  Google Scholar 

  13. M. S. Yoon, Y. J. Park, and Y. C. Joo, Thin Solid Films 408, 230 (2002).

    Article  Google Scholar 

  14. D. Klemm, M. Stangl, A. Peeva, V. Hoffmann, K. Wetzig, and J. Eckert, in Surf. Interface Anal. pp. 418–422 (2008).

    Google Scholar 

  15. J. Yu and J. Y. Kim, Acta Mater. 56, 5514 (2008).

    Article  Google Scholar 

  16. L. Yin and P. Borgesen, J. Mater. Res. 26, 455 (2011).

    Article  Google Scholar 

  17. T. Nagano, K. Tamahashi, Y. Sasajima, and J. Onuki, ECS Electrochem. Lett. 2, H23 (2013).

    Article  Google Scholar 

  18. J. Y. Kim and J. Yu, Appl. Phys. Lett. 92, 2006 (2008).

    Google Scholar 

  19. M. Sobiech, C. Krüger, U. Welzel, J.-Y. Wang, E. J. Mittemeijer, and W. Hügel, J. Mater. Res. 26, 1482 (2011).

    Article  Google Scholar 

  20. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

  21. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  22. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  23. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

  24. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  25. H. Monkhors and J. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  26. M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  Google Scholar 

  27. Pavel Lejcek, Grain Boundary Segregation in Metals (2008).

    Google Scholar 

  28. P. Lejcek and S. Hofmann, Crit. Rev. Solid State Mater. Sci. 33, 133 (2008).

    Article  Google Scholar 

  29. P. R. Cantwell, M. Tang, S. J. Dillon, J. Luo, G. S. Rohrer, and M. P. Harmer, Acta Mater. 62, 1 (2014).

    Article  Google Scholar 

  30. E. D. Hondros and M. P. Seah, Metall. Trans. A 8, 1363 (1977).

    Article  Google Scholar 

  31. P. Wynblatt and D. Chatain, Metall. Mater. Trans. A. 37, 2595 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Ross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ross, G., Tao, X., Broas, M. et al. Interfacial void segregation of Cl in Cu-Sn micro-connects. Electron. Mater. Lett. 13, 307–312 (2017). https://doi.org/10.1007/s13391-017-6304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6304-5

Keywords

Navigation