Skip to main content
Log in

Electron microscopic studies of CuS nanocrystals formed in Langmuir-Blodgett films

  • Multilayer Heterophase Electronic Materials
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The morphology and structure of CuS crystals formed during sulfidation of copper behenate films obtained by the Langmuir-Blodgett (LB) method have been studied using high resolution electron microscopy. The average size of these crystals is about 3 nm and increases by a factor of approximately 2.2 after annealing at a temperature of 150 °C or above. Analysis of interplanar distances has shown that in the range of annealing temperatures of 150–200 °C, CuS nanocrystals have a P63/mmc hexagonal crystal lattice with parameters a = 0.38 nm and c = 1.64 nm. At annealing temperatures of 250 °C or above, the Cu2S crystalline phase begins to form, in addition to CuS nanocrystals. The proportion of this phase increases with increasing annealing temperature. Cu2S nanocrystals have a hexagonal crystal lattice type with the P63/mmc spatial group and unit cell parameters a = 0.39 nm and c = 0.68 nm. Quantitative evaluation of copper and sulfur in individual CuS and Cu2S nanocrystals was performed by local analysis of characteristic X-ray spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zapan, A. K. Ray, and A. K. Hassan, “Electrical Characterisation of Stearic Acid/Eicosylamine Alternate Layer Langmuir-Blodgett Films Incorporating CdS Nanoparticles,” Thin Solid Films 515(7), 3956–3961 (2007).

    ADS  Google Scholar 

  2. L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors,” IBM J. Res. Develop. 14(1), 61–65 (1970).

    Article  Google Scholar 

  3. M.T. Mil’vidskii and V.V. Chaldyshev, “Nanoscale Atomic Clusters in Semiconductors — A New Approach to the Properties of Materials,” Fizika i Tekhnika Polyprovodnikov 32,(5), 513–522 (1998).

    Google Scholar 

  4. Nanotechnologies in Semiconductor Electronics, Ed. A. L. Aseev (Sib. Otdel. Ross. Akad. Nauk, 2004) [in Russian].

    Google Scholar 

  5. Semiconductor Chalcogenides and Their Alloys, Ed. N. Kh. Abrikosov (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  6. A. F. Wells, Structural Inorganic Chemistry (Mir, Moscow, 1987; Clarendon, Cambridge, 1984).

    Google Scholar 

  7. D. J. Vaughan and J. R. Craig, Mineral Chemistry of Metal Sulfides (Mir, Moscow, 1987; Cambridge University Press, 1981).

    Google Scholar 

  8. G. V. Samsonov and S. V. Drozdova, Sulfides (Metallurgiya, Moscow, 1972) [in Russian].

    Google Scholar 

  9. M. E. Drits, N. R. Bochvar, L. S. Guzei, et al., Double- and Multi-Component Systems Based on Copper (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  10. I. Kostov and J. Mincheva-Stefanova, Sulphide Minerals (Mir, Moscow, 1984) [in Russian].

    Google Scholar 

  11. A. G. Morachevskii, A. G. Ryabko, and L. Sh. Tsemekhman, Thermodynamics of the Copper-Sulfur System (St.-Petersburg State Univ., St.-Petersburg, 2004) [in Russian].

    Google Scholar 

  12. A. K. Gutakovskii, L. D. Pokrovskii, S. M. Repinskii, and L. L. Sveshnikova, “Investigation of the Structure of Nanoclusters of Cadmium and Lead Sulfides in a Matrix of Langmuir-Blodgett Films, Zh. Strukturn. Khim. 40(3), 589–592 (1999).

    Google Scholar 

  13. M. V. Kovalchuk, V. V. Klechkovskaya, and L. A. Feigin, “Langmuir-Blodgett Molecular Designer,” Priroda, No. 11, 11–19 (2003).

    Google Scholar 

  14. L. M. Blinov, “Physical Properties and Applications of Langmuir Mono- and Multimolecular Structures,” Uspekhi Fiz. Nauk 52(8), 713–735 (1983).

    Google Scholar 

  15. L. M. Blinov, “Langmuir Films,” Uspekhi Fiz. Nauk 155(3), 433–480 (1988).

    MathSciNet  Google Scholar 

  16. H. Bakker, A. Bleeker, P. Mul, “Design and Performance of an Ultra-High-Resolution 300kV Microscope,” Ultramicroscopy 64, 17–34 (1996).

    Article  Google Scholar 

  17. J. C. H. Spence, Experimental High-Resolution Electron Microscopy, Ed. V. N. Rozhanskii (Nauka, Moscow, 1986; Oxford University Press, 1988).

  18. L. Reimer, Transmission Electron Microscopy: Physics of Image Formation ans Microanalysis (Spinger-Verlag, Berlin-Heidelberg, 1984), Springer Series in Optical Science, Vol. 36.

    Google Scholar 

  19. L. D. Calvert, J. L. Flippen-Anderson, C. R. Hubbard, et al., “Grant-in-Aid > Appen-dix 3: The Standard Data Form for Powder Diffraction,” ICDD Grant-in-Aid, 1973. http://www.icdd.com/grants/append3.htm.

    Google Scholar 

  20. O. V. Andreev, A. V. Ruseikina, “Cu2S-EuS Phase Diagram,” Russian J. Inorganic Chemistry 57,(11), 1502–1507 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gutakovskii.

Additional information

Original Russian Text © A.K. Gutakovskii, L.L. Sveshnikova, S.A. Batsanov, N.A. Eryukov, 2014, published in Avtometriya, 2014, Vol. 50, No. 3, pp. 108–114.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutakovskii, A.K., Sveshnikova, L.L., Batsanov, S.A. et al. Electron microscopic studies of CuS nanocrystals formed in Langmuir-Blodgett films. Optoelectron.Instrument.Proc. 50, 304–309 (2014). https://doi.org/10.3103/S8756699014030157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699014030157

Keywords

Navigation