Skip to main content
Log in

Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The hierarchically porous Sn-Rh codoped ZnO, Sn-doped ZnO and pure ZnO nanosheets have been successfully synthesized through a simple hydrothermal reaction process without any surfactant or template at 180°C. The morphology and composition were carefully characterized by X-ray diffraction, energy dispersive X-ray spectrometer, field emission scanning electronic microscopy and BET. The gas-sensing testing results indicated that the Sn-Rh codoped ZnO nanosheets, with the specific surface area was 26.9 m2/g, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Sn-doped ZnO. The high sensitivity of the sensor based on Sn-Rh codoped ZnO was 149.38 to 100 ppm ethanol and the detection limit was less than 5 ppm (5.8). The response and recovery times were measured to be ∼3 s and ∼10 s when exposed to 100 ppm ethanol at the test temperature of 300°C. The good sensing performance of the Sn-Rh codoped ZnO sensor indicated that hierarchically porous Sn-Rh codoped ZnO could be a promising candidate for highly sensitive gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hu, F. Gao, S. Sang, P. Li, X. Deng, and W. Zhang, J. Mater. Sci. 50, 1935 (2015).

    Article  Google Scholar 

  2. M. Righettoni, A. Amann, and S. E. Pratsinis, Materials Today 18, 163 (2015).

    Article  Google Scholar 

  3. Z. Zhang, Y. V. Kaneti, X. Jiang, and A. Yu, Sensor. Actuat. B-Chem. 202, 803 (2014).

    Article  Google Scholar 

  4. G. C. Yi, C. Wang, and W. I. Park, Semicond. Sci. Tech. 20, 22 (2005).

    Article  Google Scholar 

  5. D. Z. Zhang, Y. Sun, and Y. Zhang, J. Mater. Sci.: Mater. Electron. 26, 7445 (2015).

    Google Scholar 

  6. X. Pan, X. Liu, A. Bermak, and Z. Fan, ACS. Nano 7, 9318 (2013).

    Article  Google Scholar 

  7. W. Guo, T. Liu, H. Zhang, R. Sun, Y. Chen, W. Zeng, and Z. Wang, Sensor. Actuat. B-Chem. 166, 492 (2012).

    Article  Google Scholar 

  8. K. H. Kim, Z. G. Jin, Y. Abe, and M. Kawamura, Mater. Lett. 149, 8 (2015).

    Article  Google Scholar 

  9. G. Zhu, H. Xu, Y. Liu, X. Xu, Z. Ji, X. Shen, and Z. Xu, Sensor. Actuat. B-Chem. 166, 36 (2012).

    Article  Google Scholar 

  10. Y. Cao, W. Pan, and Y. Zong, Sensor. Actuat. B-Chem. 138, 480 (2009).

    Article  Google Scholar 

  11. S. M. Majhi, P. Rai, and Y. T. Yu, ACS Appl. Mater. Inter. 7, 9462 (2015).

    Article  Google Scholar 

  12. S. A. Khayyat, M. Abaker, A. Umar, M. O. Alkattan, N. D. Alharbi, and S. Baskoutas, Nanosci. Nanotechnol. 12, 8453 (2012).

    Article  Google Scholar 

  13. G. N. Dar, A. Umar, S. A. Zaidi, A. A. Ibrahim, M. Abaker, S. Baskoutas, and M. S. Assiri, Sensor. Actuat. B-Chem. 173, 72 (2012).

    Article  Google Scholar 

  14. A. Katoch, G. J. Sun, and S. W. Choi, Sensor. Actuat. BChem. 185, 411 (2013).

    Article  Google Scholar 

  15. J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, and G. Li, Chem. Phys. Lett. 387, 466 (2004).

    Article  Google Scholar 

  16. P. S. Shewale, Y. S. Yu, and J. H. Kim, J. Anal. Appl. Pyrol. 112, 348 (2015).

    Article  Google Scholar 

  17. Y. H. Cho, X. Liang, and Y. C. Kang, Sensor. Actuat. BChem. 07, 330 (2015).

    Article  Google Scholar 

  18. M. Ashokkumar and S. Muthukumaran, J. Magn. Magn. Mater. 374, 61 (2015).

    Article  Google Scholar 

  19. D. Anbuselvan and S. Muthukumaran, Opt. Mater. 42, 124 (2015).

    Article  Google Scholar 

  20. L. Yu, S. Liu, and B. Yang, Mater. Lett. 141, 79 (2015).

    Article  Google Scholar 

  21. L. Yan, M. Liu, and L. Tan, Elect. Mater. Lett. 6, 1085 (2015).

    Google Scholar 

  22. H. F. Li., Y. H. Huang, Q. Zhang, Y. Qiao, Y. S. Gu, and J. Liu, Nanoscale. 3, 654 (2011).

    Article  Google Scholar 

  23. Z. D. Lin, F. Guo, and C. Wang, Rsc. Adv. 4, 5122 (2014).

    Article  Google Scholar 

  24. Z. W. Chen, Z. D. Lin, and Y. Y. Hong, J. Mater. Sci.: Mater. Electron. 27, 2633 (2015).

    Google Scholar 

  25. V. R. Shinde, T. P. Gujar, and C. D. Lokhande, Sensor. Actuat. B-Chem. 123, 701 (2007).

    Article  Google Scholar 

  26. Y. Sun, Z. Wei, W. Zhang, P. Li, K. Lian, and J. Hu, J. Mater. Sci. 51, 1428 (2016).

    Article  Google Scholar 

  27. J. A. Manion, R. E. Huie, and R. D. Levin, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, http://kinetics.nist.gov (2008).

    Google Scholar 

  28. W. Wang, Y. Tian, and X. Wang, J. Mater. Sci. 48, 3232 (2013).

    Article  Google Scholar 

  29. C. Ronning, N. G. Shang, and I. Gerhards, J. Appl. Phys. 98, 034307 (2005).

    Article  Google Scholar 

  30. N. Hongsith, E. Wongrat, and T. Kerdcharoen, Sensor. Actuat. B-Chem. 144, 67 (2010).

    Article  Google Scholar 

  31. H. C. Yoon, X. Liang, Y. C. Kang, and J. H. Lee, Sensor. Actuat. B-Chem. 207, 330 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lin, Z., Xu, M. et al. Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets. Electron. Mater. Lett. 12, 343–349 (2016). https://doi.org/10.1007/s13391-016-6053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6053-x

Keywords

Navigation