Skip to main content
Log in

Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT’s growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/μm with high growth quality as shown by Raman analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ding, D. Yuan, and J. Liu, J. Am. Chem. Soc. 130, 5428 (2008).

    Article  Google Scholar 

  2. I. Ibrahim, A. Bachmatiuk, F. Börrnert, J. Blüher, U. Wolff, J. H. Warner, B. Büchner, G. Cuniberti, and M. H. Rümmeli, Carbon 49, 5029 (2011).

    Article  Google Scholar 

  3. J.-J. Kim, B.-J. Lee, S.-H. Lee, and G.-H. Jeong, Nanotechnology 23, 105607 (2012).

    Article  Google Scholar 

  4. A. Rutkowska, D. Walker, S. Gorfman, P. A. Thomas, and J. V. Macpherson, J. Phys. Chem. C 113, 17087 (2009).

    Article  Google Scholar 

  5. H. Ago, Y. Kayo, and M. Tsuji, Jpn. J. Appl. Phys. 51, 04DN02 (2012).

    Article  Google Scholar 

  6. S. Han, X. Liu, and C. Zhou, J. Am. Chem. Soc. 127, 5294 (2005).

    Article  Google Scholar 

  7. Q. Yu, G. Qin, H. Li, Z. Xia, Y. Nian, and S.-S. Pei, J. Phys. Chem. B 110, 22676 (2006).

    Article  Google Scholar 

  8. C. Kocabas, S. J. Kang, T. Ozel, M. Shim, and J. A. Rogers, J. Phys. Chem. C 111, 17879 (2007).

    Article  Google Scholar 

  9. Y. Chen, Y. Zhang, Y. Hu, L. Kang, S. Zhang, H. Xie, D. Liu, Q. Zhao, Q. Li, and J. Zhang, Adv. Mater. 26, 5898 (2014).

    Article  Google Scholar 

  10. M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong, and S. Mitra, Nature 501, 526 (2013).

    Article  Google Scholar 

  11. A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, and J. B. Nagy, Materials 3, 3092 (2010).

    Article  Google Scholar 

  12. I. Ibrahim, A. Bachmatiuk, J. H. Warner, B. Büchner, G. Cuniberti, and M. H. Rümmeli, Small 8, 1973 (2012).

    Article  Google Scholar 

  13. J. An, Z. Zhan, H. K. S. V. Mohan, G. Sun, R. V. Hansen, and L. Zheng, J. Mater. Chem. C 3, 2215 (2015).

    Article  Google Scholar 

  14. Z.-Y. Zhan, Y.-N. Zhang, G.-Z. Sun, L.-X. Zheng, and K. Liao, Appl. Surface Sci. 257, 7704 (2011).

    Article  Google Scholar 

  15. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, and J. A. Rogers, Nat Nano 2, 230 (2007).

    Article  Google Scholar 

  16. T. Wang, S. Chen, D. Jiang, Y. Fu, K. Jeppson, L. Ye, and J. Liu, IEEE Electron. Dev. Lett. 33, 420 (2012).

    Article  Google Scholar 

  17. T. Wang, K. Jeppson, L. Ye, and J. Liu, Small 7, 2313 (2011).

    Article  Google Scholar 

  18. P. Finnie, A. Li-Pook-Than, J. Lefebvre, and D. G. Austing, Carbon 44, 3199 (2006).

    Article  Google Scholar 

  19. P. Finnie, J. Bardwell, I. Tsandev, M. Tomlinson, M. Beaulieu, J. Fraser, and J. Lefebvre, J. Vacuum Sci. Technol. A 22, 747 (2004).

    Article  Google Scholar 

  20. W. Mu, S. Sun, D. Jiang, Y. Fu, M. Edwards, Y. Zhang, K. Jeppson, and J. Liu, J. Electron. Mater. 44, 2898 (2015).

    Article  Google Scholar 

  21. D. Jiang, W. Mu, S. Chen, Y. Fu, K. Jeppson, and J. Liu, IEEE Electron. Dev. Lett. 36, 499 (2015).

    Article  Google Scholar 

  22. N. Patil, A. Lin, E. R. Myers, K. Ryu, A. Badmaev, C. Zhou, H.-S. P. Wong, and S. Mitra, IEEE Trans. Nanotechnol. 8, 498 (2009).

    Article  Google Scholar 

  23. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  Google Scholar 

  24. A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, J. Appl. Phys. 97, 041301 (2005).

    Article  Google Scholar 

  25. Y. He, D. Li, T. Li, X. Lin, J. Zhang, Y. Wei, P. Liu, L. Zhang, J. Wang, Q. Li, S. Fan, and K. Jiang, Nano Res. 7, 981 (2014).

    Article  Google Scholar 

  26. Y. Li, R. Cui, L. Ding, Y. Liu, W. Zhou, Y. Zhang, Z. Jin, F. Peng, and J. Liu, Adv. Mater. 22, 1508 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Goo-Hwan Jeong or Johan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, W., Kwak, EH., Chen, B. et al. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes. Electron. Mater. Lett. 12, 329–337 (2016). https://doi.org/10.1007/s13391-016-6012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6012-6

Keywords

Navigation