Skip to main content
Log in

Investigation of charge trapping mechanism for nanocrystal-based organic nonvolatile floating gate memory devices by band structure analysis

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This paper investigates the charge trapping mechanism and electrical performance of CdSe nanocrystals, such as nanoparticles and nanowires in organic floating gate memory devices. Despite of same chemical component, each nanocrystals show different electrical performances with distinct trapping mechanism. CdSe nanoparticles trap holes in the memory device; on the contrary, nanowires trap electrons. This phenomenon is mainly due to the difference of energy band structures between nanoparticles and nanowires, measured by the ultraviolet photoelectron spectroscopy. Also, we investigated the memory performance with C-V characteristics, charging and discharging phenomena, and retention time. The nanoparticle based hole trapping memory device has large memory window while the nanowire based electron trapping memory shows a narrow memory window. In spite of narrow memory window, the nanowire based memory device shows better retention performance of about 55% of the charge even after 104 sec of charging. The contrasting performance of nanoparticle and nanowire is attributed to the difference in their energy band and the morphology of thin layer in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, Adv. Mater. 18, 3179 (2006).

    Article  Google Scholar 

  2. T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel, and S. D. Theiss, Chem. Mater. 16, 4413 (2004).

    Article  Google Scholar 

  3. S. R. Forrest, Nature 428, 911 (2004).

    Article  Google Scholar 

  4. J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).

    Article  Google Scholar 

  5. L. E. Hueso, I. Bergenti, A. Riminucci, Y. Zhan, and V. Dediu, Adv. Mater. 19, 2639 (2007).

    Article  Google Scholar 

  6. K. Aw, P. Ooi, K. Razak, and W. Gao, J. Mater. Sci.: Mater. Electron. 24, 3116 (2013).

    Google Scholar 

  7. S.-J. Kim, J.-M. Song, and J.-S. Lee, J. Mater. Chem. 21, 14516 (2011).

    Article  Google Scholar 

  8. J. Chen, L. Xu, J. Lin, Y. Geng, L. Wang, and D. Ma, Appl. Phys. Lett. 89, 083514 (2006).

    Article  Google Scholar 

  9. R. Potember, T. Poehler, and R. Benson, Appl. Phys. Lett. 41, 548 (1982).

    Article  Google Scholar 

  10. Y.-C. Chen, C.-Y. Huang, H.-C. Yu, and Y.-K. Su, J. Appl. Phys. 112, 034518 (2012).

    Article  Google Scholar 

  11. F. M. Li, G.-W. Hsieh, S. Dalal, M. C. Newton, J. E. Stott, P. Hiralal, A. Nathan, P. A. Warburton, H. E. Unalan, and P. Beecher, Electron Devices, IEEE Transactions on, 56, 156 (2009).

    Article  Google Scholar 

  12. W. Deng, X. Zhang, C. Gong, Q. Zhang, Y. Xing, Y. Wu, X. Zhang, and J. Jie, J. Mater. Chem. C 2, 1314 (2014).

    Article  Google Scholar 

  13. M. L. Hammock, A. N. Sokolov, R. M. Stoltenberg, B. D. Naab, and Z. Bao, ACS Nano 6, 3100 (2012).

    Article  Google Scholar 

  14. W. Huang, K. Besar, R. LeCover, P. Dulloor, J. Sinha, J. F. M. Hardigree, C. Pick, J. Swavola, A. D. Everett, and J. Frechette, Chem. Sci. 5, 416 (2014).

    Article  Google Scholar 

  15. M. Yun, A. Sharma, C. Fuentes-Hernandez, D. K. Hwang, A. Dindar, S. Singh, S. Choi, and B. Kippelen, ACS Appl. Mater. Interfaces 6, 1616 (2014).

    Article  Google Scholar 

  16. S. Bera, S. P. Mondal, D. Naskar, S. C. Kundu, and S. K. Ray, Org. Electron. 15, 1767 (2014).

    Article  Google Scholar 

  17. Z. Jiang, C. Yuan, and S. Ye, RSC Adv. 4, 19584 (2014).

    Article  Google Scholar 

  18. B. Cho, S. Song, Y. Ji, T. W. Kim, and T. Lee, Adv. Funct. Mater. 21, 2806 (2011).

    Article  Google Scholar 

  19. H. Wang, S. Pigeon, R. Izquierdo, and R. Martel, Appl. Phys. Lett. 89, 183502 (2006).

    Article  Google Scholar 

  20. R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005).

    Article  Google Scholar 

  21. B. Mukherjee and A. J. Pal, Org. Electron. 7, 249 (2006).

    Article  Google Scholar 

  22. B. Park, K. Cho, H. Kim, and S. Kim, Semiconductor Sci. Technol. 21, 975 (2006).

    Article  Google Scholar 

  23. D.-I. Son, J.-H. Kim, D.-H. Park, W.K. Choi, F. Li, J.H. Ham, and T. W. Kim, Nanotechnology 19, 055204 (2008).

    Article  Google Scholar 

  24. S. N. Inamdar, P. P. Ingole, and S. K. Haram, ChemPhys Chem 9, 2574 (2008).

    Article  Google Scholar 

  25. L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, J. Mater. Chem. 21, 3814 (2011).

    Article  Google Scholar 

  26. D. H. Lee, J. M. Kim, K. T. Lim, H. J. Cho, J. H. Bang, and Y. S. Kim, Electron. Mater. Lett. 2, 276 (2016).

    Article  Google Scholar 

  27. L. Wang, C.-H. Yang, and J. Wen, Electron. Mater. Lett. 11, 505 (2015).

    Article  Google Scholar 

  28. I.-S. Shin, J.-M. Kim, J.-H. Jeun, S.-H. Yoo, Z. Ge, J.-I. Hong, J. Ho Bang, and Y.-S. Kim, Appl. Phys. Lett. 100, 183307 (2012).

    Article  Google Scholar 

  29. J.-M. Kim, I.-S. Shin, S.-H. Yoo, J.-H. Jeun, J. Lee, A. Kim, H.-S. Kim, Z. Ge, J.-I. Hong, and J. H. Bang, Microelectron. Eng. 98, 305 (2012).

    Article  Google Scholar 

  30. J. C. Scott, J. Vacuum Sci. Technol. A 21, 521 (2003).

    Article  Google Scholar 

  31. M. McCarthy, B. Liu, E. Donoghue, I. Kravchenko, D. Kim, F. So, and A. Rinzler, Science 332, 570 (2011).

    Article  Google Scholar 

  32. M. Demelasa, S. Laia, and M. B. A. Bonfiglio, Sensors 1917 (2011).

    Google Scholar 

  33. L.-S. Li, J. Hu, W. Yang, and A. P. Alivisatos, Nano Lett. 1, 349 (2001).

    Article  Google Scholar 

  34. A. Fasoli, A. Colli, F. Martelli, S. Pisana, P. H. Tan, and A. C. Ferrari, Nano Res. 4, 343 (2011).

    Article  Google Scholar 

  35. H. Fu, M. Choi, W. Luan, Y.-S. Kim, and S.-T. Tu, Solid- State Electron. 69, 50 (2012).

    Article  Google Scholar 

  36. J. B. Katari, V. L. Colvin, and A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sang Kim.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DH., Lim, KT., Park, EK. et al. Investigation of charge trapping mechanism for nanocrystal-based organic nonvolatile floating gate memory devices by band structure analysis. Electron. Mater. Lett. 12, 376–382 (2016). https://doi.org/10.1007/s13391-016-5448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-5448-z

Keywords

Navigation