Skip to main content
Log in

Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Tseng, J. X. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005).

    Article  Google Scholar 

  2. W. Lu and C. M. Lieber, Nat. Mater. 6, 841 (2007).

    Article  Google Scholar 

  3. J. C. Scott and L. D. Bozano, Adv. Mater. 19, 1452 (2007).

    Article  Google Scholar 

  4. Q. D. Ling, Y. Song, S. J. Ding, C. X. Zhu, D. S. H. Chan, D. L. Kwong, E. T. Kang, and K. G. Neoh, Adv. Mater. 17, 455 (2005).

    Article  Google Scholar 

  5. L. E. Hueso, I. Bergenti, A. Riminucci, Y. Q. Zhan, and V. Dediu, Adv. Mater. 19, 2639 (2007).

    Article  Google Scholar 

  6. M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, IEEE Trans. Nanotechnol. 5, 535 (2006).

    Article  Google Scholar 

  7. S. H. Lee, Y. Jung, and R. Agarwal, Nat. Nanotechnol. 2, 626 (2007).

    Article  Google Scholar 

  8. C.-H. Ji, I.-S. Oh, and S.-Y. Oh, Electron. Mater. Lett. 11, 795 (2015).

    Article  Google Scholar 

  9. S. C. Yoon and I. C. Hwang, Electron. Mater. Lett. 11, 41 (2015).

    Article  Google Scholar 

  10. M. H. White, D. A. Adams, and J. K. Bu, IEEE Circuits Devices 16, 22 (2000).

    Article  Google Scholar 

  11. Y. L. Yang and M. H. White, Solid-State Electron. 44, 949 (2000).

    Article  Google Scholar 

  12. K. Kim and S. Y. Lee, Microelectron. Eng. 84, 1976 (2007).

    Article  Google Scholar 

  13. J. S. Lee, C. S. Kang, Y. C. Shin, C. H. Lee, K. T. Park, J. S. Sel, V. Kim, B. I. Choe, J. S. Sim, J. Choi, and K. Kim, Jpn. J. Appl. Phys. Part 1, 45, 3213 (2006).

    Article  Google Scholar 

  14. E. Kapetanakis, P. Normand, D. Tsoukalas, K. Beltsios, J. Stoemenos, S. Zhang, and J. Van Den Berg, Appl. Phys. Lett. 77, 3450 (2000).

    Article  Google Scholar 

  15. C. Lee, J. H. Kwon, J. S. Lee, Y. M. Kim, Y. Choi, H. Shin, J. Lee, and B. H. Sohn, Appl. Phys. Lett. 91, 153506 (2007).

    Article  Google Scholar 

  16. C. J. Kim, S. W. Ryu, Y. K. Choi, J. J. Chang, S. H. Bae, and B. H. Sohn, Appl. Phys. Lett. 93, 052106 (2008).

    Article  Google Scholar 

  17. D. Gupta, M. Anand, S. W. Ryu, Y. K. Choi, and S. H. Yoo, Appl. Phys. Lett. 93, 224106 (2008).

    Article  Google Scholar 

  18. S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, Appl. Phys. Lett. 96, 033302 (2010).

    Article  Google Scholar 

  19. S. M. Jung, H. J. Kim, B. J. Kim, Y. S. Kim, T. S. Yoon, and H. H. Lee, Appl. Phys. Lett. 97, 153302 (2010).

    Article  Google Scholar 

  20. C. P. Collier, T. Vossmeyer, and J. R. Heath, Annu. Rev. Phys. Chem., 49, 371 (1998).

    Article  Google Scholar 

  21. P. J. Thomas, G. U. Kulkami, and C. N. R. Rao, Chem. Phys. Lett. 321, 163 (2000).

    Article  Google Scholar 

  22. J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002).

    Article  Google Scholar 

  23. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sang Kim.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DH., Kim, JM., Lim, KT. et al. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles. Electron. Mater. Lett. 12, 276–280 (2016). https://doi.org/10.1007/s13391-016-5387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-5387-8

Keywords

Navigation