Skip to main content
Log in

Polarity-enhanced gas-sensing performance of Au-loaded ZnO nanospindles synthesized via precipitation and microwave irradiation

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

An Erratum to this article was published on 25 August 2016

Abstract

Loading noble metal and exploring suitable morphology to achieve excellent gas-sensing performance is very crucial for the fabrication of gas sensors. We have successfully synthesized Au-loaded ZnO (Au/ZnO) nanospindles (NSs) through a really facile procedure involving a precipitation and subsequent microwave irradiation. The as-prepared products have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The formation and gas-sensing mechanism of Au/ZnO NSs were discussed. The SEM micrographs revealed an interesting morphological evolution of the Au/ZnO NSs with Au-loading content ranging from 0 at. % to 7 at. %. The nanostructures were employed for gas-sensing measurement toward various gases. It indicated that the Au/ZnO NSs based sensor showed a highly enhanced response (226.81) to 400 ppm acetone gas at a relatively low working temperature (270°C), and exhibited a fast response (1 s) and recovery speed (10 s). The highly enhanced acetone gas sensitivity of Au/ZnO NSs based sensor could be attributed to its enhanced polarity owing to the peculiar morphology, Schottcky barriers, as well as catalytic effect of Au NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. X. Yu, X. S. Liu, M. Z. Wu, Z. Q. Sun, G. Li, and X. S. Chen, Chinese J. Chem. Phys. 27, 99 (2014).

    Article  Google Scholar 

  2. V. Talwar, O. Singh, and R. C. Singh, Sensor Actuat. B-Chem. 191, 276 (2014).

    Article  Google Scholar 

  3. G. Korotcenkov, L. B. Gulina, B. K. Cho, S. H. Han, and V. P. Tolstoy, Mater. Chem. Phys. 128, 433 (2011).

    Article  Google Scholar 

  4. Y. M. Zhu, V. Thangadurai, and W. Weppner, Sensor Actuat. B-Chem. 176, 284 (2013).

    Article  Google Scholar 

  5. B. C. Yadav, A. Yadav, T. Shukla, and S. Singh, B Mater. Sci. 34, 1639 (2011).

    Article  Google Scholar 

  6. J. Herran, O. Fernandez-Gonzalez, I. Castro-Hurtado, T. Romero, G. G. Mandayo, and E. Castano, Sensor Actuat. BChem. 149, 368 (2010).

    Article  Google Scholar 

  7. D. Zhu, T. X. Hu, Y. Y. Zhao, W. L. Zang, L. L. Xing, and X. Y. Xue, Sensor Actuat. B-Chem. 213, 382 (2015).

    Article  Google Scholar 

  8. Q. Q. Zhao, D. X. Ju, X. L. Deng, J. Z. Huang, B. Q. Cao, and X. J. Xu, Sci. Rep.-Uk 5 (2015).

    Google Scholar 

  9. L. Yin, D. L. Chen, H. W. Zhang, G. Shao, B. B. Fan, R. Zhang, and G. S. Shao, Mater. Chem. Phys. 148, 1099 (2014).

    Article  Google Scholar 

  10. Y. Yang, C. G. Tian, J. C. Wang, L. Sun, K. Y. Shi, W. Zhou, and H. G. Fu, Nanoscale 6, 7369 (2014).

    Article  Google Scholar 

  11. R. J. Wu and T. M. Wu, Sensor Lett. 8, 564 (2010).

    Article  Google Scholar 

  12. P. D. Burton, D. Lavenson, M. Johnson, D. Gorm, A. M. Karim, T. Conant, A. K. Datye, B. A. Hernandez-Sanchez, and T. J. Boyle, Top Catal 49, 227 (2008).

    Article  Google Scholar 

  13. Y. S. Wang, S. R. Wang, H. X. Zhang, X. L. Gao, J. D. Yang, and L. W. Wang, J. Mater. Chem. A 2, 7935 (2014).

    Article  Google Scholar 

  14. D. Barreca, E. Comini, A. P. Ferrucci, A. Gasparotto, C. Maccato, C. Maragno, G. Sberveglieri, and E. Tondello, Chem. Mater. 19, 5642 (2007).

    Article  Google Scholar 

  15. C. Bittencourt, E. Llobet, M. A. P. Silva, R. Landers, L. Nieto, K. O. Vicaro, J. E. Sueiras, J. Calderer, and X. Correig, Sensor Actuat. B-Chem. 92, 67 (2003).

    Article  Google Scholar 

  16. Y. Zhang, T. M. Liu, H. Zhang, W. Zeng, F. S. Pan, and X. H. Peng, J. Mater. Sci.-Mater. El. 26, 191 (2015).

    Article  Google Scholar 

  17. J. P. Zhang, T. M. Liu, Y. Zhang, W. Zeng, F. S. Pan, and X. H. Peng, J. Mater. Sci.-Mater. El. 26, 1347 (2015).

    Article  Google Scholar 

  18. B. W. Yu, Y. M. Fu, P. L. Wang, Y. Y. Zhao, L. L. Xing, and X. Y. Xue, Phys. Chem. Chem. Phys. 17, 10856 (2015).

    Article  Google Scholar 

  19. H. Y. Fu, X. Y. Lang, C. Hou, Z. Wen, Y. F. Zhu, M. Zhao, J. C. Li, W. T. Zheng, Y. B. Liu, and Q. Jiang, J. Mater. Chem. C 2, 7216 (2014).

    Article  Google Scholar 

  20. R. C. Pawar, J. S. Shaikh, S. S. Suryavanshi, and P. S. Patil, Curr. Appl. Phys. 12, 778 (2012).

    Article  Google Scholar 

  21. Y. Li, D. L. Li, and J. C. Liu, Chinese Chem. Lett. 26, 304 (2015).

    Article  Google Scholar 

  22. X. H. Jia, H. Q. Fan, M. Afzaal, X. Y. Wu, and P. O'Brien, J. Hazard. Mater. 193, 194 (2011).

    Article  Google Scholar 

  23. R. Garcia-Gutierrez, M. Barboza-Flores, D. Berman-Mendoza, R. Rangel-Segura, and O. E. Contreras-Lopez, Adv. Mater. Sci. Eng. 2012, 5 (2012).

    Article  Google Scholar 

  24. D. W. Zhang, X. F. Wu, N. Han, and Y. F. Chen, J. Nanopart Res. 15, 1580 (2013).

    Article  Google Scholar 

  25. J. J. Zhang, E. J. Guo, H. Y. Yue, L. P. Wang, C. Y. Zhang, J. Chang, and X. Gao, J. Mater. Sci.-Mater. El. 24, 3435 (2013).

    Article  Google Scholar 

  26. H. M. Sun, L. M. Wang, D. Q. Chu, Z. C. Ma, A. X. Wang, Y. J. Zheng, and L. D. Wang, Ceram. Int. 40, 16465 (2014).

    Article  Google Scholar 

  27. Y. C. Liang, W. K. Liao, and X. S. Deng, J. Alloy Compd. 599, 87 (2014).

    Article  Google Scholar 

  28. J. W. Zhao, C. S. Xie, L. Yang, S. P. Zhang, G. Z. Zhang, and Z. M. CaiState, Appl. Surf. Sci. 330, 126 (2015).

    Article  Google Scholar 

  29. D. T. Phan and G. S. Chung, Sensor Actuat. B-Chem. 187, 191 (2013).

    Article  Google Scholar 

  30. L. W. Wang, S. R. Wang, M. J. Xu, X. J. Hu, H. X. Zhang, Y. S. Wang, and W. P. Huang, Phys. Chem. Chem. Phys. 15, 17179 (2013).

    Article  Google Scholar 

  31. J. Guo, J. Zhang, M. Zhu, D. X. Ju, H. Y. Xu, and B. Q. Cao, Sensor Actuat. B-Chem. 199, 339 (2014).

    Article  Google Scholar 

  32. N. S. Ramgir, P. K. Sharma, N. Datta, M. Kaur, A. K. Debnath, D. K. Aswal, and S. K. Gupta, Sensor Actuat. BChem. 186, 718 (2013).

    Article  Google Scholar 

  33. Y. Li, T. Lv, F.-X. Zhao, Q. Wang, X.-X. Lian, and Y.-L. Zou, Electron. Mater. Lett. 11, 890 (2015).

    Article  Google Scholar 

  34. X. Li, X. Zhou, H. Guo, C. Wang, J. Liu, P. Sun, F. Liu, and G. Lu, ACS Appl. Mater. Interfaces 6, 18661 (2014).

    Article  Google Scholar 

  35. X. W. Li, W. Feng, Y. Xiao, P. Sun, X. L. Hu, K. Shimanoe, G. Y. Lu, and N. Yamazoe, Rsc. Adv. 4, 28005 (2014).

    Article  Google Scholar 

  36. Y. H. Xiao, L. Z. Lu, A. Q. Zhang, Y. H. Zhang, L. Sun, L. Huo, and F. Li, Acs Appl. Mater. Inter. 4, 3797 (2012).

    Article  Google Scholar 

  37. G. X. Wan, S. Y. Ma, X. B. Li, F. M. Li, H. Q. Bian, L. P. Zhang, and W. Q. Li, Mater. Lett. 114, 103 (2014).

    Article  Google Scholar 

  38. J. Q. He, J. Yin, D. Liu, L. X. Zhang, F. S. Cai, and L. J. Bie, Sensor Actuat. B-Chem. 182, 170 (2013).

    Article  Google Scholar 

  39. Z. S. Hosseini, A. Mortezaali, and A. I. Zad, Sensor Actuat. A-Phys. 212, 80 (2014).

    Article  Google Scholar 

  40. R. C. Pawar, J. S. Shaikh, A. V. Moholkar, S. M. Pawar, J. H. Kim, J. Y. Patil, S. S. Suryavanshi, and P. S. Patil, Sensor Actuat. B-Chem. 151, 212 (2010).

    Article  Google Scholar 

  41. R. C. Pawar, J. W. Lee, V. B. Patil, and C. S. Lee, Sensor Actuat. B-Chem. 187, 323 (2013).

    Article  Google Scholar 

  42. J. Q. Liu, G. H. Jin, Z. X. Zhai, F. F. Monica, and X. S. Liu, Electron. Mater. Lett. 11, 457 (2015).

    Article  Google Scholar 

  43. S. Y. Lin, S. J. Chang, and T. J. Hsueh, Appl. Phys. Lett. 104, 5 (2014).

    Google Scholar 

  44. S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. G. Ha, A. Facchetti, and T. J. Marks, Appl. Phys. Lett. 92, 022104-1-3 (2008).

    Google Scholar 

  45. Y. V. Kaneti, J. L. Moriceau, M. Liu, Y. Yuan, Q. Zakaria, X. H. Jiang, and A. B. Yu, Sensor Actuat. B-Chem. 209, 889 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lv, T., Zhao, FX. et al. Polarity-enhanced gas-sensing performance of Au-loaded ZnO nanospindles synthesized via precipitation and microwave irradiation. Electron. Mater. Lett. 12, 411–418 (2016). https://doi.org/10.1007/s13391-016-5391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-5391-z

Keywords

Navigation