Skip to main content
Log in

High Performance Acetone Sensor Based on Au Modified ZnO Nanosheets Fabricated via Solvothermal and Ultrasonic Reduction Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Au modified ZnO nanosheets with excellent acetone sensing were successfully fabricated via solvothermal routine and ultrasonic reduction method. The structure, morphology and composition of the as-synthesized products were characterized by x-ray diffraction, field-emission electron microscopy, transmission electron microscopy and energy dispersive x-ray spectroscopy. Gas sensors based on the as-prepared products with different Au content were tested in detail. The results indicate that ultrasonic reduction can effectively drive in situ nucleation and growth of gold nanoparticles on the surface of ZnO, resulting in a close contact phase boundary between Au nanoparticles and ZnO nanosheets that is very beneficial to the material’s gas sensitivity. Au modification can greatly enhance the gas sensing ability of ZnO sensors. Specifically, the sensor based on 0.5 at.% Au modified ZnO exhibits the highest response, quickest response and satisfactory selectivity towards acetone. The response increases to 164–100 ppm acetone at 275°C, which is more than about 4.5 times the response (37) of pure ZnO. This study demonstrates that Au modified ZnO has great potential for acetone detection in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. Zhang, S.S. Chang, S.W. Yao, and H.Z. Wang, J. Electron. Mater. 48, 4895 (2019).

    Article  CAS  Google Scholar 

  2. A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, C. Sedrati, Y. Bouachiba, and C. Benazzouz, Ceram. Int. 42, 6701 (2016).

    Article  CAS  Google Scholar 

  3. H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, and A. Marimuthu, Photochem. Photobiol. 94, 237 (2018).

    Article  CAS  Google Scholar 

  4. Q. Zhou, C.X. Hong, Z.G. Li, S.D. Peng, G.L. Wu, Q. Wang, Q.Y. Zhang, and L.N. Xu, J Nanosci Nanotechno 18, 3335 (2018).

    Article  CAS  Google Scholar 

  5. M.M. Rahman, M.M. Alam, and A.M. Asiri, J. Ind. Eng. Chem. 65, 300 (2018).

    Article  CAS  Google Scholar 

  6. A. Renitta and K. Vijayalakshmi, Sens. Actuat. B-Chem. 237, 912 (2016).

    Article  CAS  Google Scholar 

  7. X.X. Song, H.F. Fu, X.J. Li, X.H. Yi, H.Y. Chu, and C.C. Wang, J. Inorg. Organomet. Polym. 29, 33 (2019).

    Article  CAS  Google Scholar 

  8. C. Liu, B.Q. Wang, T.S. Wang, J.Y. Liu, P. Sun, X.H. Chuai, and G.Y. Lu, Sens. Actuat. B-Chem. 248, 902 (2017).

    Article  CAS  Google Scholar 

  9. A.N.A. Anasthasiya, S. Ramya, P.K. Rai, and B.G. Jeyaprakash, Chem. Phys. Lett. 692, 50 (2018).

    Article  Google Scholar 

  10. R. Khan, P. Uthirakumar, T.H. Kim, and I.H. Lee, Mater. Res. Bull. 115, 176 (2019).

    Article  CAS  Google Scholar 

  11. L.M. Liu, W.Z. Wang, J.Y. Long, S.Y. Fu, Y.J. Liang, and J.L. Fu, Sol. Energy Matrt. Sol. C 195, 330 (2019).

    Article  CAS  Google Scholar 

  12. Y. Mun, S. Park, S. An, C. Lee, and H.W. Kim, Ceram. Int. 39, 8615 (2013).

    Article  CAS  Google Scholar 

  13. M.R. Hernandez, A.D. Santillan, E.D. Ortiz, S.F. Tavizon, I. Moggio, E. Arias, C.A. Gallardo-Vega, J.A.M. Silva, and E.D. Barriga-Castro, Rsc Adv 9, 6965 (2019).

    Article  CAS  Google Scholar 

  14. Z.W. Gao, Y. Lin, J.W. Li, and X.P. Wang, Chinese J Chem Phys 27, 350 (2014).

    Article  CAS  Google Scholar 

  15. J. Hu, N. You, Z. Yu, G. Zhou, and X.Y. Xu, J. Appl. Phys. 120, 074301 (2016).

    Article  Google Scholar 

  16. A. Umar, M. Alduraibi, and O. Al-Dossary, Sci. Adv. Mater. 12, 908 (2020).

    Article  CAS  Google Scholar 

  17. F. Sarf, I.K. Er, E. Yakar, and S. Acar, J. Mater. Sci.-Mater. Electron. 31, 10084 (2020).

    Article  CAS  Google Scholar 

  18. H. Colak and E. Karakose, Sens. Actuat. B-Chem. 296, 126629 (2019).

    Article  CAS  Google Scholar 

  19. Y. Wang, X.N. Meng, M.X. Yao, G. Sun, and Z.Y. Zhang, Ceram. Int. 45, 13150 (2019).

    Article  CAS  Google Scholar 

  20. X.L. Ke, G.D. Zhu, Y. Dai, Y.Q. Shen, J.M. Yang, and J.Y. Liu, J. Electroanal. Chem. 817, 176 (2018).

    Article  CAS  Google Scholar 

  21. M. Sakir, S. Salem, S.T. Sanduvac, E. Sahmetlioglu, G. Sarp, M.S. Onses, and E. Yilmaz, Colloid Surface A 585, 124088 (2020).

    Article  CAS  Google Scholar 

  22. B. Zhang, Y. Wang, X.N. Meng, Z.Y. Zhang, and S.F. Mu, Mater. Chem. Phys. 250, 2693 (2020).

    Google Scholar 

  23. M.J. Yang, S.D. Zhang, F.D. Qu, S. Gong, C.H. Wang, L. Qiu, M.H. Yang, and W.L. Cheng, J. Alloy. Compd. 797, 246 (2019).

    Article  CAS  Google Scholar 

  24. D. Liu, J.W. Wan, H. Wang, G.S. Pang, and Z.Y. Tang, Inorg. Chem. Commun. 102, 203 (2019).

    Article  CAS  Google Scholar 

  25. S.G. Yu, H.Y. Zhang, C. Chen, and C.C. Lin, Sens. Actuat. B-Chem. 287, 526 (2019).

    Article  CAS  Google Scholar 

  26. Y. Li, T. Lv, F.X. Zhao, X.X. Lian, Y.L. Zou, and Q. Wang, Electron. Mater. Lett. 12, 411 (2016).

    Article  CAS  Google Scholar 

  27. Y. Li, T. Lv, F.X. Zhao, Q. Wang, X.X. Lian, and Y.L. Zou, Electron. Mater. Lett. 11, 890 (2015).

    Article  CAS  Google Scholar 

  28. V. Vaiano, C.A. Jaramillo-Paez, M. Matarangolo, J.A. Navio, and M.D. Hidalgo, Mater. Res. Bull. 112, 251 (2019).

    Article  CAS  Google Scholar 

  29. L. Campagnolo, S. Lauciello, A. Athanassiou, and D. Fragouli, Water-Sui 11, 1787 (2019).

    Article  CAS  Google Scholar 

  30. Z.W. Chen, Z.D. Lin, M.Y. Xu, Y.Y. Hong, N. Li, P. Fu, and Z. Chen, Electron. Mater. Lett. 12, 343 (2016).

    Article  CAS  Google Scholar 

  31. Z.P. Li, Q.Q. Zhao, W.L. Fan, and J.H. Zhan, Nanoscale 3, 1646 (2011).

    Article  CAS  Google Scholar 

  32. X.L. Yang, S.F. Zhang, Q. Yu, L.P. Zhao, P. Sun, T.S. Wang, F.M. Liu, X. Yan, Y. Gao, X.S. Liang, S.M. Zhang, and G.Y. Lu, Sens. Actuat. B-Chem. 281, 415 (2019).

    Article  CAS  Google Scholar 

  33. J.H. Kim, A. Mirzaei, H.W. Kim, and S.S. Kim, Sens. Actuat. B-Chem. 267, 597 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Song, S., Lian, XX. et al. High Performance Acetone Sensor Based on Au Modified ZnO Nanosheets Fabricated via Solvothermal and Ultrasonic Reduction Method. J. Electron. Mater. 49, 7435–7442 (2020). https://doi.org/10.1007/s11664-020-08546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08546-4

Keywords

Navigation