Skip to main content
Log in

Sn-Ag-Cu to Cu joint current aging test and evolution of resistance and microstructure

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

SAC 305 solder bump with 800 μm diameter were produced and soldered to a custom substrate with Cu lines as leads that allow for resistance measurement during current aging. The measured joint resistance values (leads plus solder bump) before aging are 7.7 ± 1.8 mΩ and 11.8 ± 2.8 mΩ at room temperature and 160°C, respectively. In general, the resistance of the solder joint increases instantly by about 1 mΩ, when subjected to a 2.2 A aging current at 160°C. The increase is gradual in the following hours of aging and more drastic as it approaches the final failure. Four stages are identified in the resistance signal curve and compared with observations from cross sections. The stages are IMC growth, crack formation and propagation, intermittent crack healing-forming, and final failure resulting in an open connection at the cathode. Recently a periodical drop and rise behavior was reported for the resistance signal. This behavior is reproduced and attributed to the intermittent crack healing-forming stage. The healing events observed are faster than the sampling time. Possibly, as current is concentrated when bypassing interfacial cracks, local melting occurs partially filling cracks before resolidifying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Miller, I. E. Anderson, and J. F. Smith, J. Electron. Mater. 23, 595 (1994).

    Article  Google Scholar 

  2. J. H. Lau, Flip Chip Technologies, Vol. 1. New York: McGraw-Hill (1996).

  3. C.-H. Mangin and S. McClelland, Surface Mount Technol. (1987).

    Google Scholar 

  4. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  Google Scholar 

  5. T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys. 90, 4502 (2001).

    Article  Google Scholar 

  6. L. Xu, J. H. L. Pang, and K. N. Tu, Appl. Phys. Lett. 89, 221909 (2006).

    Article  Google Scholar 

  7. C. Y. Liu, C. Chih, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, 58 (1999).

    Article  Google Scholar 

  8. T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, J. Appl. Phys. 89, 3189 (2001).

    Article  Google Scholar 

  9. Y.-S. Lai, K.-M. Chen, C.-L. Kao, C.-W. Lee, and Y.-T. Chiu, Microelectron. Reliab. 47, 1273 (2007).

    Article  Google Scholar 

  10. Y.-S. Lai, C.-W. Lee, and C.-L. Kao, J. Electron. Packaging. 129, 56 (2007).

    Article  Google Scholar 

  11. Y. W. Chang, S. W. Liang, and C. Chen, Appl. Phys. Lett. 89, 032103 (2006).

    Article  Google Scholar 

  12. C. K. Lin, Y. W. Chang, and C. Chen, J. Appl. Phys. 115, 083707 (2014).

    Article  Google Scholar 

  13. L. Snugovsky, P. Snugovsky, D. D. Perovic, S. Bagheri, and J. W. Rutter, Mater. Sci. Tech. Ser. 25, 1467 (2009).

    Article  Google Scholar 

  14. D.-G. Kim, J.-W. Kim, and S.-B. Jung, Thin Solid Films 504, 426 (2006).

    Article  Google Scholar 

  15. T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola, and J. K. Kivilahti, Microelectron. Reliab. 47, 1135 (2007).

    Article  Google Scholar 

  16. D. Giancoli, “25. Electric Currents and Resistance”, “Physics for Scientists and Engineers with Modern Physics”, (4th edition ed.), p. 658, Upper Saddle River, New Jersey: Prentice Hall (1984).

    Google Scholar 

  17. R. J. Fields, S. R. Low, and G. K. Lucey, The Metal Science of Joining, pp. 165–2 (1991).

    Google Scholar 

  18. Y. W. Chang, T. H. Chiang, and C. Chen, Appl. Phys. Lett. 91, 132113 (2007).

    Article  Google Scholar 

  19. H. W. Tseng, C. T. Lu, Y. H. Hsiao, P. L. Liao, Y. C. Chuang, T. Y. Chung, and C. Y. Liu, Microelectron. Reliab. 50, 1159 (2010).

    Article  Google Scholar 

  20. W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys. 94, 5665 (2003).

    Article  Google Scholar 

  21. Y.-H. Liu and K.-L. Lin, J. Mater. Res. 20, 2184 (2005).

    Article  Google Scholar 

  22. K. Yamanaka, T. Yutaka, and K. Suganuma, Microelectron. Reliab. 47, 1280 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Pil Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D.E., Chow, J., Mayer, M. et al. Sn-Ag-Cu to Cu joint current aging test and evolution of resistance and microstructure. Electron. Mater. Lett. 11, 1078–1084 (2015). https://doi.org/10.1007/s13391-015-5201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5201-z

Keywords

Navigation