Skip to main content
Log in

Synthesis of needle-shape ZnO-ZnS core-shell heterostructures and their optical and field emission properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Well-aligned ZnO-ZnS core-shell nano-needle arrays were synthesized using a simple aqueous solution approach to investigate the optical and field emission properties of heterostructure materials. The photoluminescence of the core-shell nano-needles exhibits a distinct enhancement compared with that of uncoated ZnO nano-needles. The UV-vis spectra show that the ZnS shell layer enhances the optical absorption of ZnO nano-needles by decreasing the interface band gap, which indicates the potential application of heterostructures in photovoltaic and solar cells. The core-shell nano-needles exhibit a remarkably high field enhancement factor of 3.74 × 103, a low turn-on field of 2.31 V/μm, and a high time stability. These findings show that the construction of core-shell heterostructure can efficiently improve the field emission performance of ZnO nano-needles, which is a promising route for the development of novel nanoemitters with controllable morphology and as suitable shell materials for heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rouhi, M. R. Mahmood, S. Mahmud, and R. Dalvand, J. Solid State Electrochem. 18, 1695 (2014).

    Article  Google Scholar 

  2. X. Yan, B.-K. Tay, and P. Miele, Carbon 46, 753 (2008).

    Article  Google Scholar 

  3. L. Liao, J. C. Li, D. Wang, C. Liu, C. Liu, Q. Fu, and L. Fan, Nanotechnology 16, 985 (2005).

    Article  Google Scholar 

  4. W. T. Zheng, Y. M. Ho, H. W. Tian, M. Wen, J. L. Qi, and Y. A. Li, J. Phys. Chem. C. 113, 9164 (2009).

    Article  Google Scholar 

  5. W. W. Wang, Y. J. Zhu, and L. X. Yang, Adv. Funct. Mater. 17, 59 (2007).

    Article  Google Scholar 

  6. T. Gao, Q. Li, and T. Wang, Chem. Mater. 17, 887 (2005).

    Article  Google Scholar 

  7. J. Geng, B. Liu, L. Xu, F.-N. Hu, and J.-J. Zhu, Langmuir 23, 10286 (2007).

    Article  Google Scholar 

  8. S. Y. Bae, H. W. Seo, H. C. Choi, J. Park, and J. Park, J. Phys. Chem. B. 108, 12318 (2004).

    Article  Google Scholar 

  9. J. Rouhi, M. Alimanesh, S. Mahmud, R. Dalvand, C. Ooi, and M. Rusop, Mater. Lett. 125, 147 (2014).

    Article  Google Scholar 

  10. J. Rouhi, M. Alimanesh, R. Dalvand, C. Ooi, S. Mahmud, and M. R. Mahmood, Ceram. Int. 40, 11193 (2014).

    Article  Google Scholar 

  11. H. J. Fan, U. Gösele, and M. Zacharias, Small 3, 1660 (2007).

    Article  Google Scholar 

  12. Y. Chang, J. J. Teo, and H. C. Zeng, Langmuir 21, 1074 (2005).

    Article  Google Scholar 

  13. L. Au, X. Lu, and Y. Xia, Adv. Mater. 20, 2517 (2008).

    Article  Google Scholar 

  14. F. Li, X. Liu, T. Kong, Z. Li, and X. Huang, Cryst. Res. Technol. 44, 402 (2009).

    Article  Google Scholar 

  15. Y. Zhu, D. Fan, and W. Shen, J. Phys. Chem. C. 112, 10402 (2008).

    Article  Google Scholar 

  16. H.-F. Shao, X.-F. Qian, and Z.-K. Zhu, J. Solid State Chem. 178, 3522 (2005).

    Article  Google Scholar 

  17. S. Dhara, K. Imakita, P. Giri, M. Mizuhata, and M. Fujii, J. Appl. Phys. 114, 134307 (2013).

    Article  Google Scholar 

  18. X. Liu, X. Wu, H. Cao, and R. Chang, J. Appl. Phys. 95, 3141 (2004).

    Article  Google Scholar 

  19. S. Sepulveda-Guzman, B. Reeja-Jayan, E. de La Rosa, A. Torres-Castro, V. Gonzalez-Gonzalez, and M. Jose-Yacaman, Mater. Chem. Phys. 115, 172 (2009).

    Article  Google Scholar 

  20. J. Schrier, D. O. Demchenko, L.-W. Wang, and A. P. Alivisatos, Nano Lett. 7, 2377 (2007).

    Article  Google Scholar 

  21. A. Datta, S. K. Panda, and S. Chaudhuri, J. Phys. Chem. C. 111, 17260 (2007).

    Article  Google Scholar 

  22. Y.-Z. Yoo, Z.-W. Jin, T. Chikyow, T. Fukumura, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 81, 3798 (2002).

    Article  Google Scholar 

  23. M.-C. Kao, H.-Z. Chen, S.-L. Young, C.-C. Lin, and C.-Y. Kung, Nanoscale Res. Lett. 7, 260 (2012).

    Article  Google Scholar 

  24. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett. 9, 279 (2008).

    Article  Google Scholar 

  25. L. L. Jensen, J. T. Muckerman, and M. D. Newton, J. Phys. Chem. C. 112, 3439 (2008).

    Article  Google Scholar 

  26. C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, and M. Edoff, Phys. Rev. Lett. 97, 146403 (2006).

    Article  Google Scholar 

  27. J. Rouhi, S. Mahmud, S. Hutagalung, and N. Naderi, Electron. Lett. 48, 712 (2012).

    Article  Google Scholar 

  28. X.-P. Shen, A.-H. Yuan, Y.-M. Hu, Y. Jiang, Z. Xu, and Z. Hu, Nanotechnology 16, 2039 (2005).

    Article  Google Scholar 

  29. B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, Nanotechnology 16, 2567 (2005).

    Article  Google Scholar 

  30. Q. Zhao, H. Zhang, Y. Zhu, S. Feng, X. Sun, J. Xu, and D. Yu, Appl. Phys. Lett. 86, 203115 (2005).

    Article  Google Scholar 

  31. W. Yi, T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J.-B. Yoo, and J. Kim, J. Adv. Mater. 14, 1464 (2002).

    Article  Google Scholar 

  32. M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, and K. Akimoto, Sol. Energy Mater. Sol. Cells 93, 970 (2009).

    Article  Google Scholar 

  33. Z. L. Wang and J. Song, Science 312, 242 (2006).

    Article  Google Scholar 

  34. C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. LaLumondiere, T.-W. Yeh, and M. L. Povinelli, Nano Lett. 12, 4484 (2012).

    Article  Google Scholar 

  35. H. J. Jeong, H. K. Choi, G. Y. Kim, Y. I. Song, Y. Tong, S. C. Lim, and Y. H. Lee, Carbon 44, 2689 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Rouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi, J., Ooi, C.H.R., Mahmud, S. et al. Synthesis of needle-shape ZnO-ZnS core-shell heterostructures and their optical and field emission properties. Electron. Mater. Lett. 11, 957–963 (2015). https://doi.org/10.1007/s13391-015-5097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5097-7

Keywords

Navigation