Skip to main content
Log in

Size-selective and facile synthesis of ZnO/ZnS core–shell nanostructure and its characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel methodology and its mechanism to synthesize ZnO/ZnS core–shell nanostructure by hydrothermal-supported co-precipitation method are presented. Chemical precursors Na2S and thioacetic acid were used as chemical conversion agents. Detailed structural, morphological, compositional and optical studies were carried out. Powder X-ray diffraction analysis confirms the presence of both wurtzite and cubic phase in ZnO/ZnS core–shell, respectively. OH absorption capacity of as-grown ZnO/ZnS nanostructures was found to be enhanced due to interfacial roughness ZnO/ZnS as compared to pristine ZnO. Morphological studies confirm the formation of irregular spherical nanocrystals of size ~ 50 nm. Band gap of ZnO nanocrystals was found to be increased upon sulphidation process. Room temperature EPR studies also confirmed the ZnS shell over ZnO nanocrystals suppresses the paramagnetic defects in ZnO. Interestingly, defect-related visible light emission from ZnO nanocrystals was found to be suppressed completely due to the presence of the larger band gap of ZnS as a shell over ZnO core. ZnS shell restricts the photogenerated charge carriers within the ZnO nanocrystal core, making ZnO/ZnS core–shell a potential candidate for optoelectronic applications such as UV photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Chang, E.R. Waclawik, RSC Adv. 4, 23505 (2014)

    Article  ADS  Google Scholar 

  2. M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Chem. Soc. Rev. 42, 2986 (2013)

    Article  Google Scholar 

  3. P. Reiss, M. Protiere, L. Li, Small 5, 154 (2009)

    Article  Google Scholar 

  4. S. Saha, P. Sarkar, Chem. Phys. Lett. 555, 191 (2013)

    Article  Google Scholar 

  5. S.K. Shaikh, V.V. Ganbavle, S.I. Inamdar, K.Y. Rajpure, RSC Adv. 6, 25641 (2016)

    Article  ADS  Google Scholar 

  6. S. Choi, A.M. Berhane, A. Gentle, C. Ton-That, M.R. Phillips, I. Aharonovich, ACS Appl. Mater. Interfaces 7, 5619 (2015)

    Article  Google Scholar 

  7. S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, Superlattice Microst. 76, 253 (2014)

    Article  ADS  Google Scholar 

  8. M.M. Ismail, W.Q. Cao, M.D. Humadi, Optik 127, 4307 (2016)

    Article  ADS  Google Scholar 

  9. H.W. Kang, J. Leem, S.Y. Yoon, H.J. Sung, Nanoscale 6, 2840 (2014)

    Article  ADS  Google Scholar 

  10. P. Uthirakumar, C.-H. Hong, E.-K. Suh, Y.-S. Lee, Chem. Mater. 18, 4990 (2006)

    Article  Google Scholar 

  11. P.K. Vabbina, R. Sinha, A. Ahmadivand, M. Karabiyik, B. Gerislioglu, O. Awadallah, N. Pala, ACS Appl. Mater. Interfaces 23, 19791 (2017)

    Article  Google Scholar 

  12. B.G. Gerislioglu, L. Dong, A. Ahmadivand, H. Hu, P. Nordlander, N.J. Halas, Nano Lett. 20, 2087 (2020)

    Article  ADS  Google Scholar 

  13. A. Yadav, B. Gerisliogluc, A. Ahmadivand, A. Kaushike, G.J.C.Z. Ouyang, Q. Wangh, V.S. Yadav, Y.K. Mishra, Y. Wu, Y. Liu, S.R. Krishna, Nano Today 37, 101072 (2021)

    Article  Google Scholar 

  14. S. Venkataprasad Bhat, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, Solid State Commun. 149, 510 (2009)

    Article  ADS  Google Scholar 

  15. L. Qin, C. Shing, S. Sawyer, P.S. Dutta, Opt. Mater. 33, 359 (2011)

    Article  ADS  Google Scholar 

  16. Y. Gong, T. Andelman, G.F. Neumark, S. O’Brien, I.L. Kuskovsky, Nanoscale Res Lett. 2(6), 297 (2007)

    Article  ADS  Google Scholar 

  17. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)

    Article  ADS  Google Scholar 

  18. S.B. Zhang, S.-H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    Article  ADS  Google Scholar 

  19. D.C. Reynolds, D.C. Look, B. Jogai, J. Appl. Phys. 89, 6189 (2001)

    Article  ADS  Google Scholar 

  20. K. Grieve, P. Mulvaney, F. Grieser, Curr. Opin. Colloid Interface Sci. 5, 168 (2000)

    Article  Google Scholar 

  21. D.C.J. Neo, C. Cheng, S.D. Stranks, S.M. Fairclough, J.S. Kim, A.I. Kirkland, J.M. Smith, H.J. Snaith, H.E. Assender, A.A.R. Watt, Chem. Mater. 26, 4004 (2014)

    Article  Google Scholar 

  22. S. Sawyer, L. Qin, C. Shing, Zinc oxide nanoparticles for ultraviolet photodetection. Int. J. High Speed Electron. Syst. 20, 183 (2012)

    Article  Google Scholar 

  23. A.M. Bazargan, F. Sharif, S. Mazinani, N. Naderi, J Mater Sci: Mater Electron 27, 8221 (2016)

    Google Scholar 

  24. P. Singh, B. Rajesh, S. Bishnoi, G. Swati, V.V. Jaiswal, V. Shanker, D. Haranath, Ceram. Int. 42, 17016 (2016)

    Article  Google Scholar 

  25. Hu. Linfeng, M.M. Brewster, Xu. Xiaojie, C. Tang, S. Gradečak, X. Fang, Nano Lett. 13, 1941 (2013)

    Article  ADS  Google Scholar 

  26. G. Malloci, L. Chiodo, A. Rubio, A. Matton, J. Phys. Chem. C 116, 8741 (2012)

    Article  Google Scholar 

  27. S.K. Kailasa, H.-F. Wu, Analyst 135, 1115 (2010)

    Article  ADS  Google Scholar 

  28. S.K. Kailasa, K. Kiran, H.-F. Wu, Anal. Chem. 80, 9681 (2008)

    Article  Google Scholar 

  29. X.M. Shuai, W.Z. Shen, J. Phys. Chem. C 6415, 115 (2011)

    Google Scholar 

  30. Y. Hu, H. Qian, Y. Liu, G. Du, F. Zhang, L. Wang, X. Hu, CrystEngComm 13, 3438 (2011)

    Article  Google Scholar 

  31. C.-C. Cheng, C.-F. Cho, J.L. Chiu, C.-T. Tsai, H. Chen, Results Phys. 10, 449 (2018)

    Article  ADS  Google Scholar 

  32. E. Júnior, F. Nobre, G. Laécio, S. Cavalcante, M. Santos, F. Souza, J.M. Matos, RSC Adv. 7, 24263 (2017)

    Article  ADS  Google Scholar 

  33. G. Swati, D. Bidwai, D. Haranath, Nanotechnology 31, 364007 (2020)

    Article  Google Scholar 

  34. Y. Ye, H. Zhang, Y. Chen, P. Denga, Z. Huang, L. Liu, Y. Qian, Y. Li, Q. Li et al., J Alloy Compd. 639, 422 (2015)

    Article  Google Scholar 

  35. Y.P. Xie, Z.B. Yu, G. Liu, X.L. Ma, H.-M. Cheng, Energy Environ. Sci. 7, 1895 (2014)

    Article  Google Scholar 

  36. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9(23), 6814–6817 (2018)

    Article  Google Scholar 

  37. P. Fageria, S. Gangopadhyay, S. Pande, RSC Adv. 4, 24962 (2014)

    Article  ADS  Google Scholar 

  38. G. Rani, P.D. Sahare, Nano Commun. Netw. 3, 197–202 (2012)

    Article  Google Scholar 

  39. H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers, P. Roth, J. Mater. Sci. 37, 4349 (2002)

    Article  ADS  Google Scholar 

  40. E.M. Flores, C.W. Raubach, R. Gouvea, E. Longo, S. Cava, M.L. Moreira, Optical and structural investigation of ZnO@ZnS core–shell nanostructures. Mater. Chem. Phys. 173, 347 (2016)

    Article  Google Scholar 

  41. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N. Kamarulzaman, Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure. J. Lumin. 145, 244 (2014)

    Article  Google Scholar 

  42. K.S. Ranjith, A. Senthamizhan, B. Balusamy, T. Uyar, Catal. Sci. Technol. 7, 1167 (2017)

    Google Scholar 

  43. G. Swati, S. Mishra, D. Yadav, R.K. Sharma, D. Dwivedi, N. Vijayan, J.S. Tawale, V. Shanker, D. Haranath, J. Alloys Comp. 571, 1 (2013)

    Article  Google Scholar 

  44. R. Khokhra, B. Bharti, H.-N. Lee, R. Kumar, Sci Rep. 7, 15032 (2017)

    Article  ADS  Google Scholar 

  45. P. Camarda, F. Messina, L. Vaccaro, S. Agnello, G. Buscarino, R. Schneider, R. Popescu, D. Gerthsen, R. Lorenzi, F. Gelardi, M. Cannas, Phys. Chem. Chem. Phys. 18, 16237 (2016)

    Article  Google Scholar 

  46. G. Hitkari, S. Singh, G. Pandey, Nano-Struct. Nano-Objects 12, 1 (2017)

    Article  Google Scholar 

  47. D. Savchenko, A. Vasin, O. Kuz, I. Verovsky, A. Prokhorov, A. Nazarov, J. Lančok, E. Kalabukhova, Sci. Rep 10, 17347 (2020)

    Article  ADS  Google Scholar 

  48. E. Cerrato, M.C. Paganini, E. Giamello, J. Photochem. Photobiol 397, 112531 (2020)

    Article  Google Scholar 

  49. M. Kakazey, M. Vlasova, M. Dominguez-Patiño, M. Dominguez-Patiño, G. Srećković, T.N. Natalija, Sci. Sinter. 36, 65 (2004)

    Article  Google Scholar 

  50. H.-L. Guo, Q. Zhu, X.-L. Wu, Y.-F. Jiang, X. Xie, A.-W. Xu, Nanoscale 7, 7216 (2015)

    Article  ADS  Google Scholar 

  51. S.-T. Tai, Y.-S. Tsai, Y.C. Sermon Wu, W. J.-Jr. Wang, C. Hsiang, Results Phys. 15, 102703 (2019). https://doi.org/10.1016/j.rinp.2019.102703

  52. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N. Kamarulzaman, J. Lumin. 145, 244 (2014)

    Article  Google Scholar 

  53. Y.-C. Liang, C.-C. Wang, RSC Adv. 8, 5063 (2018)

    Article  ADS  Google Scholar 

  54. X.M. Shuai, W.Z. Shen, J. Phys. Chem. C 115, 6415–6422 (2011)

    Article  Google Scholar 

  55. M.A. Hassan, M.A. Johar, A. Waseem, I.V. Bagal, J.-S. Ha, S.-W. Ryu, Opt. Express 27, A184–A196 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author GS thanks VIT for providing ‘VIT SEED GRANT’ for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Swati.

Ethics declarations

Conflict of interest

Authors G. Swati and Manoj Morampudi hereby declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swati, G., Morampudi, M. Size-selective and facile synthesis of ZnO/ZnS core–shell nanostructure and its characterization. Appl. Phys. A 127, 456 (2021). https://doi.org/10.1007/s00339-021-04554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04554-1

Keywords

Navigation