Skip to main content
Log in

A simple low pressure method for the synthesis of TiO2 nanotubes and nanofibers and their application in DSSCs

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

TiO2 nanotubes were synthesized using a modified autoclave-free thermal method from as-prepared initial powders. The size of initial powders (IP) was found to be critical in determining the morphology and crystal structure of the final product. Oleylamine (OA) was used as the polymer agent in the preparation of initial powders with different mol ratios of OA/Ti: 1, 5, and 10. X-ray diffraction analysis depicted that the increase of mole ratio up to 10 resulted in smaller nanoparticles with the sizes of about 8 nm. It was also deliberated that low temperature thermally treated IP showed the characteristic diffraction pattern of titanate phase of nanotubes. Scanning electron microscope images showed nanorods, short nanotubes, and single-phase long and uniform nanofibers produced from initial powders. SEM cross-section of the anode cell of TiO2 nanofibers demonstrated the presence of uniformly closed net long fibers in the cell. Open circuit voltage measurements of the nanofiber cell demonstrated a several hundreds of seconds in the electron transport decay, which was significantly higher than that of the nanoparticles. IMPS/IMVS measurements of the nanofibers and nanotube solar cells showed electron transport enhancement and long life time compared to their nanoparticle counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Khan, H. T. Jung, and O. B. Yang, J. Phys. Chem. B. 6, 6626 (2006).

    Article  Google Scholar 

  2. J. W. Zhang, Y. Wang, Z. S. Jin, Z. S. Wu, and Z. J. Zhang, Appl. Surf. Sci. 254, 4462 (2008).

    Article  Google Scholar 

  3. D. Wang, F. Zhou, Y. Liu, and W. M. Liu, Mater. Lett. 62, 1819 (2008).

    Article  Google Scholar 

  4. N. Wang, H. Lin, J. B. Li, X. Z. Yang, and B. Chi, Thin Solid Films 496, 649 (2006).

    Article  Google Scholar 

  5. M. Gratzel, Prog. PhotoVolt. 8, 171 (2000).

    Article  Google Scholar 

  6. T. Prakash, Electron. Mater. Lett. 8, 231 (2012).

    Article  Google Scholar 

  7. M. K. Nazeeruddin, E. Baranoff, and M. Gratzel, Sol. Energy 85, 1172 (2011).

    Article  Google Scholar 

  8. M.-W. Park, K.-Y. Chun, J.-S. Lee, D.-J. Kwak, Y.-M. Sung, and Y.-T. Hyun, Electron. Mater. Lett. 5, 109 (2009).

    Google Scholar 

  9. P. H. Huh and S.-C. Kim, Electron. Mater. Lett. 8, 131 (2012).

    Article  Google Scholar 

  10. Y. Noh and O. Song, Electron. Mater. Lett. 10, 627 (2014).

    Article  Google Scholar 

  11. T.-T. Bui, T. Matrab, V. Woehling, J. Longuet, C. Plesse, G. T. M. Nguyen, F. Vidal, and F. Goubard, Electron. Mater. Lett. 10, 209 (2014).

    Article  Google Scholar 

  12. T. Prashant V. Kamat, J. Phys. Chem. C 111, 2834 (2007).

    Article  Google Scholar 

  13. S. H. Lim, J. Luo, Z. Zhong, W. Ji, and J. Lin, Inorg. Chem. 44, 4124 (2005).

    Article  Google Scholar 

  14. M. Karimipour, M. J. Mageto, R. Etefagh, E. Azhir, M. Mwamburi, and Z. Topalian, Eur. Phys. J. Appl. Phys. 61, 10601 (2013).

    Article  Google Scholar 

  15. R. Könenkamp, R. C. Word, and M. Godinez, Nanotech. 17, 1858 (2006).

    Article  Google Scholar 

  16. N. M. Mahmoodi, M. Arami, N. Y. Limaee, and N. S. Tabrizi, Chem. Eng. J. 112, 191 (2005).

    Article  Google Scholar 

  17. S. Ivankovic, M. Gotic, M. Jurin, and S. Music, J. Sol-Gel Sci. Technol. 27, 225 (2003).

    Article  Google Scholar 

  18. I. Paramasivam, H. Jha, L. Ning, and P. Schmuki, Small 8, 3073 (2008).

    Article  Google Scholar 

  19. X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).

    Article  Google Scholar 

  20. P. Chen, J. Brillet, H. Bala, P. Wang, S. M. Zakeeruddin, and M. Graetzel, J. Mater. Chem. 19, 5325 (2009).

    Article  Google Scholar 

  21. D. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Graetzel, ACS Nano. 2, 1113 (2008).

    Article  Google Scholar 

  22. G. J. Meyer, Inorg. Chem. 44, 6852 (2005).

    Article  Google Scholar 

  23. M. Rahman, F. Tajabadi, L. Shooshtari, and N. Taghavinia, Chem. Phys. Chem. 12, 966 (2011).

    Google Scholar 

  24. E. Enache-Pommer, J. E. Boercker, and E. S. Aydil, Appl. Phys. Lett. 91, 123116 (2007).

    Article  Google Scholar 

  25. M. Samadpour, A. Irajizad, N. Taghavinia, and M. Molaei, J. Phys. D: Appl. Phys. 44, 045103 (2011).

    Article  Google Scholar 

  26. E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E Moser, Nano Lett. 10, 638 (2010).

    Article  Google Scholar 

  27. Y. Jia, F. Yang, F. Cai, C. Cheng, and Y. Zhao, Electron. Mater. Lett. 9, 287 (2013).

    Article  Google Scholar 

  28. N. Kopidakis, N. R. Neale, K. Zhu, J. van de Lagemaat, and A. Frank, J. Appl. Phys. Lett. 87, 202106 (2005).

    Article  Google Scholar 

  29. M. Karimipour, M. Khancheh-Zar, and M. Molaei, J. Nano Res. 28, 121 (2014).

    Article  Google Scholar 

  30. W. C. Leng-Wong, T. Y. Nian, and A. R. Mohamed, J. Env. Manag. 92, 1669 (2011).

    Article  Google Scholar 

  31. T. Kasuga, TSF 496, 141 (2006).

    Article  Google Scholar 

  32. P. Scherrer, Gottinger Nachrichten, Estimation of Size and Internal Structure of Colloidal Particles by Means of Röntgen Rays, 2, 98 (1918).

    Google Scholar 

  33. C. Encarnación-Gómez, J. R. Vargas-García, J. A. Toledo-Antonio, M. A. Cortes-Jacome, and C. Ángeles-Chávez, J. Alloy Comp. 495, 45861 (2010).

    Article  Google Scholar 

  34. G. Mogilevsky, C. Qiang, A. Kleinhammes, and W. Yue, Chem. Phys. Lett. 460, 517 (2008).

    Article  Google Scholar 

  35. A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, Phys. Chem. Chem. Phys. 8, 4655 (2006).

    Article  Google Scholar 

  36. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, and A. B. Walker, J. Am. Chem. Soc. 130, 13364 (2008).

    Article  Google Scholar 

  37. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 6, 215 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Karimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour, M., Mashhoun, S., Mollaei, M. et al. A simple low pressure method for the synthesis of TiO2 nanotubes and nanofibers and their application in DSSCs. Electron. Mater. Lett. 11, 625–632 (2015). https://doi.org/10.1007/s13391-015-4319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4319-3

Keywords

Navigation