Skip to main content
Log in

Preparation and electrochemical performances of rod-like LiV3O8/carbon composites using polyaniline as carbon source

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Rod-like LiV3O8/carbon composites were successfully prepared by the polymer graphitization of LiV3O8/polyaniline composites, which were synthesized through the in-situ oxidative polymerization method. The crystal phases of as-prepared samples, confirmed by X-ray diffraction, show that the interlayer spacing in LiV3O8/carbon composites is much wider than that of the pristine LiV3O8. Compared to the bare LiV3O8, the longer and smoother rod-like LiV3O8/carbon composites, investigated by scanning electron microscope and transmission electron microscope, were covered by a continuously thin layer of fluffy carbon with a thickness of approximate 20 nm. The optimal LiV3O8/carbon composite delivered a discharge capacity of 219.37 mAh g−1 in the initial cycle, and maintained a high capacity of 263.538 mAh g−1 at the 30th cycle, which was much higher than that of the pristine LiV3O8 (227.645 mAh g−1). Cyclic voltammetry measurements disclose that, after the carbon coating treatment, the phase transition of the optimal LiV3O8/carbon composite proceeds more reversibly and smoothly during charging/discharging. The improved cyclability of the optimal LiV3O8/carbon composite should be attributed to the confinement from thin carbon layer, the structural stability, the good interfacial compatibility, and the well-preserved electrode morphology after prolonged cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Fergus, J. Power Sources 195, 939 (2010).

    Article  Google Scholar 

  2. X. Y. Cao, L. X. Zhang, B. Yang, X. Liu, D. W. Song, and L. B. Qu, Int. J. Electrochem. Sci. 6, 4239 (2011).

    Google Scholar 

  3. D. Wang, L. Cao, J. Huang, and J. Wu, Ceram. Int. 38, 2647 (2012).

    Article  Google Scholar 

  4. L. L. Xie, Y. D. Xu, J. J. Zhang, C. P. Zhang, X. Y. Cao, and L. B. Qu, Electron. Mater. Lett. 9, 549 (2013).

    Article  Google Scholar 

  5. K. Kim, S. H. Park, T. H. Kwon, H. Ahn, Y. D. Eo, and M. J. Lee, Ceram. Int. 39, 1623 (2013).

    Article  Google Scholar 

  6. A. Pan, J. Zhang, G. Cao, S. Liang, C. Wang, Z. Nie, B. W. Arey, W. Xu, D. Liu, J. Xiao, G. Li, and J. Liu, J. Mater. Chem. 21, 10077 (2011).

    Article  Google Scholar 

  7. X. Cao, L. Xie, H. Zhan, and Y. Zhou, Mater. Res. Bull. 44, 472 (2009).

    Article  Google Scholar 

  8. X. Cao, C. Yuan, X. Tang, L. Xie, X. Liu, H. Wang, and X. Yan, J. Iran. Chem. Soc. 6, 698 (2009).

    Article  Google Scholar 

  9. D. Wang, L. Cao, J. Huang, and J. Wu, Ceram. Int. 39, 3759 (2013).

    Article  Google Scholar 

  10. S. Sarkar, H. Banda, and S. Mitra, Electrochim. Acta 99, 242 (2013).

    Article  Google Scholar 

  11. S. Huang, X. L. Wang, Y. Lu, X. M. Jian, X. Y. Zhao, H. Tang, J. B. Cai, C. D. Gu, and J. P. Tu, J. Alloys Compd. 584, 41 (2014).

    Article  Google Scholar 

  12. L. Jiao, H. Li, H. Yuan, and Y. Wang, Mater. Lett. 62, 3937 (2008).

    Article  Google Scholar 

  13. S. Y. Chew, C. Feng, S. H. Ng, J. Wang, Z. Guo, and H. Liu, J. Electrochem. Soc. 154, 633 (2007).

    Article  Google Scholar 

  14. L. Liu, L. Jiao, J. Sun, Y. Zhang, M. Zhao, H. Yuan, and Y. Wang, Electrochim. Acta 53, 7321 (2008).

    Article  Google Scholar 

  15. L. Liu, L. Jiao, H. Yuan, and X. Wang, Chem. Ind. Eng. Prog. 30, 189 (2011).

    Google Scholar 

  16. H. Wang, Y. Tang, D. Zhou, S. Liu, and H. Zhang, Prog. Chem. 25, 927 (2013).

    Google Scholar 

  17. N. H. Idris, M. M. Rahman, J. Z. Wang, Z. X. Chen, and H. K. Liu, Compos. Sci. Technol. 71, 343 (2011).

    Article  Google Scholar 

  18. X. Cao, L. Xie, and R. Wang, J. Solid State Electrochem. 15, 473 (2011).

    Article  Google Scholar 

  19. J. H. Lee, J. K. Lee, and W. Y. Yoon, Jpn. J. Appl. Phys. 52, 10–1 (2013).

    Google Scholar 

  20. L. L. Xie, X. Y. Cao, L. X. Zhang, Z. X. Dai, and L. B. Qu, Electron. Mater. Lett. 9, 183 (2013).

    Article  Google Scholar 

  21. S. Liang, M. Qin, J. Liu, Q. Zhang, T. Chen, Y. Tang, and W. Wang, Mater. Lett. 93, 435 (2013).

    Article  Google Scholar 

  22. V. Manev, A. Momchilov, A. Nassalevska, G. Pistoia, and M. Pasquali, J. Power Sources 54, 501 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Zhu, L. & Wu, H. Preparation and electrochemical performances of rod-like LiV3O8/carbon composites using polyaniline as carbon source. Electron. Mater. Lett. 11, 650–657 (2015). https://doi.org/10.1007/s13391-015-4240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4240-9

Keywords

Navigation