Skip to main content
Log in

Li1+x Mn2−x O4 (0 ≤ x ≤ 0.2) spinel mesorod cathode materials for rechargeable lithium batteries

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Li1+x Mn2−x O4 (0 ≤ x ≤ 0.2) mesorods have been synthesized by using β-MnO2 mesorods as a self-template, and obtained by a hydrothermal reaction of K2Mn4O8. Various techniques were used to characterize the structural and morphological features of the synthesized samples. Among the Li1+x Mn2−x O4 (0 ≤ x ≤ 0.2) compositions investigated, the Li1.05Mn1.95O4 mesorods exhibit the best electrochemical performance, with a reversible capacity of 108 and 102 mAh g−1 at 3 C and 5 C rates, respectively, with a capacity retention of 89% over 100 cycles. The enhanced electrochemical performance is attributed to a facile lithium-ion and electron transport, facilitated by the mesorod morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  Google Scholar 

  2. T. Ohzuku and Y. Makimura, Chem. Lett. 2, 642 (2001).

    Article  Google Scholar 

  3. H. Gabrisch, R. Yazami, and B. Fultz, J. Electrochem. Soc. 151, A891 (2004).

    Article  Google Scholar 

  4. M. Y. Cho, K. C. Roh, S. M. Park, and J. W. Lee, Mater. Lett. 65, 2011 (2011).

    Article  Google Scholar 

  5. A. Iqba, Y. Iqbal, L. Chang, S. Ahmed, Z. Tang, and Y. Gao, J. Nanopart. Res. 14, 1206 (2012).

    Article  Google Scholar 

  6. W. Sun, F. Cao, Y. Liu, X. Zhao, X. Liu, and J. Yuan, J. Mater. Chem. 22, 20952 (2012).

    Article  Google Scholar 

  7. L. Feng, S. Wang, L. Han, X. Qin, H. Wei, and Y. Yang, Mater. Lett. 78, 116 (2012).

    Article  Google Scholar 

  8. X. Xiang, Z. Fu, and W. Li, J. Solid State Elect. 17, 1201 (2013).

    Article  Google Scholar 

  9. E. Hosono, T. Kudo, I. Honma, H. Matsuda, and H. Zhou, Nano Lett. 9, 1045 (2009).

    Article  Google Scholar 

  10. A. Cao and A. Manthiram, Phys. Chem. Chem. Phys. 14, 6724 (2012).

    Article  Google Scholar 

  11. Y. Oh, S. Nam, S. Wi, S. Hong, and B. Park, Electron. Mater. Lett. 8, 91 (2012).

    Article  Google Scholar 

  12. M.-S. Yoon, M. Islam, Y. M. Park, and S.-C. Ur, Electron. Mater. Lett. 9, 187 (2013).

    Article  Google Scholar 

  13. D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, C. B. Azzoni, M. M. Cristina, and A. Comin, Phys. Chem. Chem. Phys. 3, 2162 (2001).

    Article  Google Scholar 

  14. W. Choi and A. Manthiram, J. Electrochem. Soc. 154, A792 (2007).

    Article  Google Scholar 

  15. P. Singh, A. Sil, M. Nath, and S. Ray, J. Electrochem. Soc. 157, A259 (2010).

    Article  Google Scholar 

  16. T. Ohzuku, M. Kitagawa, and T. Hirai, J. Electrochem. Soc. 137, 769 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukeun Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S. Li1+x Mn2−x O4 (0 ≤ x ≤ 0.2) spinel mesorod cathode materials for rechargeable lithium batteries. Electron. Mater. Lett. 10, 1133–1136 (2014). https://doi.org/10.1007/s13391-014-4122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4122-6

keywords

Navigation