Skip to main content
Log in

Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials through facile layered/spinel phase tuning

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Series Li1.2Ni0.2Mn0.6O2 (LNMO) cathode materials have been synthesized by an improved one-step solvothermal method. Structural characterization reveals that all samples are composed of layered and spinel phases and the spinel phase content can be easily tuned by Na-doping or reducing lithium in the LNMO materials. The spinel phase content increases from 2.6% for the x = 0.02 Na-doped sample to 9.2% for the deficient lithium sample. Electrochemical performance measurement shows that the electrochemical performance of the series samples is closely related to the spinel phase content. The deficient lithium sample with the largest spinel phase content has the most excellent cyclic and rate performance. The deficient lithium sample displays a high discharge capacity of 118.9 mAh g−1 at 5 C rate and much more stable capacity retention of 89.4% after 50 cycles at 0.1 C rate, whereas the corresponding values are 66.7, 27.4, and 2.7 mAh g−1 at 5 C rate and 69.4, 58.7, and 37.8% at 0.1 C rate for the Na-doped samples with x = 0, 0.01, and 0.02. The excellent cyclic and rate performance of the electrodes with higher spinel phase content originated from more 3D Li-ion diffusion channels in spinel framework and the relatively stable layered structure improved by an appropriate spinel phase integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen S, Zheng Y, Lu Y, Su Y, Bao L, Li N, Li Y, Wang J, Chen R, Wu F (2017) Enhanced electrochemical performance of layered Lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands. ACS Appl Mater Inter 9(10):8669–8678

    Article  CAS  Google Scholar 

  2. Liu Y, Liu S, Wang Y, Chen L, Chen X (2013) Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode. J Power Sources 222:455–460

    Article  CAS  Google Scholar 

  3. Deng Y-P, Fu F, Wu Z-G, Yin ZW, Zhang T, Li JT, Huang L, Sun SG (2016) Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A 4(1):257–263

    Article  CAS  Google Scholar 

  4. Ates MN, Jia Q, Shah A, Busnaina A, Mukerjee S, Abraham KM (2013) Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J Electrochem Soc 161(3):A290–A301

    Article  CAS  Google Scholar 

  5. Jin X, Xu Q, Liu X, Yuan X, Liu H (2016) Improvement in rate capability of lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 by Mo substitution. Ionics 22(8):1369–1376

    Article  CAS  Google Scholar 

  6. Kou Y, Han E, Zhu L, Liu L, Zhang ZA (2016) The effect of Ti doping on electrochemical properties of Li1.167 Ni0.4Mn0.383Co0.05O2 for lithium-ion batteries. Solid State Ionics 296:154–157

    Article  CAS  Google Scholar 

  7. Sallard S, Sheptyakov D, Villevieille C (2017) Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+. J Power Sources 359:27–36

    Article  CAS  Google Scholar 

  8. Guo H, Xia Y, Zhao H, Yin C, Jia K, Zhao F, Liu Z (2017) Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides. Ceram Int 43(16):13845–13852

    Article  CAS  Google Scholar 

  9. Zhao J, Wang Z, Guo H, Li X, He Z, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41(9):11396–11401

    Article  CAS  Google Scholar 

  10. Zhou Y, Bai P, Tang H, Zhu J, Tang Z (2016) Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a Lithium ion battery cathode material. J Electroanal Chem 782:256–263

    Article  CAS  Google Scholar 

  11. Liu Y, Gao Y, Wang Q, Dou A (2013) Influence of coated MnO2 content on the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes. Ionics 20:825–831

    Article  CAS  Google Scholar 

  12. Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N (2013) Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol 235:570–576

    Article  CAS  Google Scholar 

  13. Kong J-Z, Zhai H-F, Qian X, Wang M, Wang QZ, Li AD, Li H, Zhou F (2017) Improved electrochemical performance of Li1.2 Mn 0.54 Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloy Compd 694:848–856

    Article  CAS  Google Scholar 

  14. Han E, Li Y, Zhu L, Zhao L (2014) The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries. Solid State Ionics 255:113–119

    Article  CAS  Google Scholar 

  15. Pang S, Wang Y, Chen T, Shen X, Xi X, Liao D (2016) The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram Int 42(4):5397–5402

    Article  CAS  Google Scholar 

  16. Huang X, Zhang Q, Chang H, Gan J, Yue H, Yang Y (2009) Hydrothermal synthesis of nanosized LiMnO2–Li2MnO3 compounds and their electrochemical performances. J Electrochem Soc 156(3):A162–A168

    Article  CAS  Google Scholar 

  17. Pei Y, Xu C-Y, Xiao Y-C, Chen Q, Huang B, Li B, Li S, Zhen L, Cao G (2017) Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv Funct Mater 27(7):1604349

    Article  CAS  Google Scholar 

  18. Lee E-S, Huq A, Manthiram A (2013) Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries. J Power Sources 240:193–203

    Article  CAS  Google Scholar 

  19. Xu M, Fei L, Lu W, Chen Z, Li T, Liu Y, Gao G, Lai Y, Zhang Z, Wang P, Huang H (2017) Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application. Nano Energy 35:271–280

    Article  CAS  Google Scholar 

  20. Zhang J, Guo X, Yao S, Qiu X (2016) High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries. China Chem 59(11):1479–1485

    Article  CAS  Google Scholar 

  21. Liu Y, Gao Y, Dou A (2014) Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery. J Power Sources 248:679–684

    Article  CAS  Google Scholar 

  22. Zhang L, Wu B, Li N, Mu D, Zhang C, Wu F (2013) Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. J Power Sources 240:644–652

    Article  CAS  Google Scholar 

  23. Wang D, Yu R, Wang X, Ge L, Yang X (2015) Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries. Sci Rep 5(1):8403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu F, Huang Y, Wu P, Bu Y, Wang Y, Yao J (2015) Controlled synthesis of lithium-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 oxide with tunable morphology and structure as cathode material for lithium-ion batteries by solvo/hydrothermal methods. J Alloy Compd 618:673–678

    Article  CAS  Google Scholar 

  25. Zeng J, Cui Y, Qu D, Zhang Q, Wu J, Zhu X, Li Z, Zhang X (2016) Facile synthesis of platelike hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with exposed {010} planes for high-rate and long cycling-stable lithium ion batteries. ACS Appl Mater Interfaces 8(39):26082–26090

    Article  CAS  PubMed  Google Scholar 

  26. Kim S, Ma X, Ong SP, Ceder G (2012) A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys Chem Chem Phys 14(44):15571–15578

    Article  CAS  PubMed  Google Scholar 

  27. Wang J-f, Chen D, Wu W, Wang L, Liang G-c (2017) Effects of Na+ doping on crystalline structure and electrochemical performances of LiNi0.5Mn1.5O4 cathode material. Trans Nonferrous Metal Soc Chin 27(10):2239–2248

    Article  CAS  Google Scholar 

  28. Qing R-P, Shi J-L, Xiao D-D, Zhang XD, Yin YX, Zhai YB, Gu L, Guo YG (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6(6):1501914

    Article  CAS  Google Scholar 

  29. Liu Y, Zhang Z, Gao Y, Yang G, Li C, Zheng J, Dou A, Wang Q, Su M (2016) Mitigating the voltage decay and improving electrochemical properties of layered-spinel Li1.1Ni0.25Mn0.75O2.3 cathode material by Cr doping. J Alloys Compd 657:37–43

    Article  CAS  Google Scholar 

  30. Feng X, Yang Z, Tang D, Kong Q, Gu L, Wang Z, Chen L (2015) Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys Chem Chem Phys 17(2):1257–1264

    Article  CAS  PubMed  Google Scholar 

  31. Zheng Z, Wu Z-G, Zhong Y-J, Shen CH, Hua WB, Xu BB, Yu C, Zhong BH, Guo XD (2015) A further electrochemical investigation on solutions to high energetical power sources: isomerous compound 0.75Li1.2Ni0.2Mn0.6O2·0.25LiNi0.5Mn1.5O4. RSC Adv 5(47):37330–37339

    Article  CAS  Google Scholar 

  32. Hong J, Seo D-H, Kim S-W, Gwon H, Oh S-T, Kang K (2010) Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J Mater Chem 20(45):10179–10186

    Article  CAS  Google Scholar 

  33. Wei X, Zhang S, Du Z, Yang P, Wang J, Ren Y (2013) Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method. Electrochim Acta 107:549–554

    Article  CAS  Google Scholar 

  34. Zhang Q, Mei J, Xie X, Wang X, Zhang J (2015) Solution combustion synthesis and enhanced electrochemical performance Li1.2Ni0.2Mn0.6O2 nanoparticles by controlling NO3−/CH3COO ratio of the precursors. Mater Res Bull 70:397–402

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Nation Key Research and Development program under Contract No. 2017YFA0402800 and the National Nature Science Foundation of China under Contract Nos. U1732160 and 11504380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bangchuan Zhao.

Electronic supplementary material

ESM 1

(DOC 37095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhao, B., Zhou, J. et al. Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials through facile layered/spinel phase tuning. J Solid State Electrochem 22, 2587–2596 (2018). https://doi.org/10.1007/s10008-018-3953-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3953-8

Keywords

Navigation