Skip to main content
Log in

Electro-optical characterization of cyanine-based GUMBOS and nanoGUMBOS

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Over the last decade in materials science, molecular electronics has emerged as one of the most rapidly developing interdisciplinary research areas with the prospects of ultimate miniaturization and integration of functional organic species with traditional silicon based semiconductor technology. To this end, fundamental studies to investigate the electrical and optical properties of organic nanomaterials deserve special attention. In this work, conductive probe atomic force microscopy (CP-AFM) and Raman spectroscopy have been performed on a new class of ionic materials, referred to as group of uniform materials based on organic salts (GUMBOS) and nanoparticles derived from these GUMBOS, termed as nanoGUMBOS. The GUMBOS investigated in this study are 1,1′-Diethyl-2,2′-cyanine bis (trifluoromethanesulfonyl) imide ([PIC][NTf2]) and 1,1′-Diethyl-2,2′-cyanine bis (pentafluoromethanesulfonyl) imide ([PIC][BETI]), which have been synthesized by use of a facile, template free anion exchange reaction between their respective parent compounds, followed by an ultrasonication assisted, additive free re-precipitation reaction to obtain the nanoscale particles (nanoGUMBOS). The ([PIC][NTf2] nanoGUMBOS were found to self-assemble into distinct diamond-like, trapezoid structures whereas [PIC][BETI] exhibited rod-like structures. [PIC][NTf2] nanoGUMBOS induced ~25 and ~38 times enhancement in the Raman signal intensity as compared to the parent compound [PIC][I] and [PIC][BETI] nanoGUMBOS respectively. In conjunction with the results of Raman spectra, the current-voltage (I-V) data obtained by CP-AFM are also presented as first-time evidence of electrical performance exhibited by these unique class of materials. The results reported in this study are indicative of their potential incorporation into next generation organic thin film applications in optoelectronics, dye-sensitized solar cells, and chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chang, Z. Lu, L. An, and J. Zhang, J. Phys. Chem. C 116, 1195 (2012).

    Article  Google Scholar 

  2. Y. S. Zhao, H. Fu, A. Peng, Y. Ma, D. Xiao, and J. Yao, Adv. Mater. 20, 2859 (2008).

    Article  Google Scholar 

  3. J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, and Y. Chen, J. Am. Chem. Soc. 135, 8484 (2013).

    Article  Google Scholar 

  4. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, Adv. Funct. Mater. 21, 3019 (2011).

    Article  Google Scholar 

  5. M. Muccini, Nat. Mater. 5, 605 (2006).

    Article  Google Scholar 

  6. G. Horowitz, J. Mater. Chem. 9, 2021 (1999).

    Article  Google Scholar 

  7. H. Iijima, K. Kimura, T. Sakai, A. Uchimura, T. Shimizu, H. Ueno, T. Natori, Y. Koezuka, and Y. Wei, Supramol. Sci. 5, 723 (1998).

    Article  Google Scholar 

  8. G. E. Moore, Proc. IEEE 86, 82 (1998).

    Article  Google Scholar 

  9. J. R. Heath, Annu. Rev. Mater. Res. 39, 1 (2009).

    Article  Google Scholar 

  10. A. Tesfai, B. El-Zahab, D. K. Bwambok, G. A. Baker, S. O. Fakayode, M. Lowry, and I. M. Warner, Nano Lett. 8, 897 (2008).

    Article  Google Scholar 

  11. A. Tesfai, B. El-Zahab, A. T. Kelley, M. Li, J. C. Garno, G. A. Baker, and I. M. Warner, Acs Nano 3, 3244 (2009).

    Article  Google Scholar 

  12. D. K. Bwambok, B. El-Zahab, S. K. Challa, M. Li, L. Chandler, G. A. Baker, and I. M. Warner, Acs Nano 3, 3854 (2009).

    Article  Google Scholar 

  13. S. L. de Rooy, S. Das, M. Li, B. El-Zahab, A. Jordan, R. Lodes, A. Weber, L. Chandler, G. A. Baker, and I. M. Warner, J. Phys. Chem. C 116, 8251 (2012).

    Article  Google Scholar 

  14. S. Das, D. Bwambok, B. El-Zahab, J. Monk, S. L. de Rooy, S. Challa, M. Li, F. R. Hung, G. A. Baker, and I. M. Warner, Langmuir Acs J. Surfaces Colloids 26, 12867 (2010).

    Article  Google Scholar 

  15. J. C. Dumke, B. El-Zahab, S. Challa, S. Das, L. Chandler, M. Tolocka, D. J. Hayes, and I. M. Warner, Langmuir 26, 15599 (2010).

    Article  Google Scholar 

  16. A. N. Jordan, S. Das, N. Siraj, S. L. de Rooy, M. Li, B. El-Zahab, L. Chandler, G. A. Baker, and I. M. Warner, Nanoscale 4, 5031 (2012).

    Article  Google Scholar 

  17. B. B. Alba Avila, Crit. Rev. Solid State Mater. Sci. 35, 38 (2010).

    Article  Google Scholar 

  18. T. W. Kelley, E. Granstrom, and C. D. Frisbie, Adv. Mater. 11, 261 (1999).

    Article  Google Scholar 

  19. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line, CRC Press, New York (2001).

    Google Scholar 

  20. A. Kudelski, Talanta 76, 1 (2008).

    Article  Google Scholar 

  21. F. Barriere, B. Fabre, E. Hao, Z. M. LeJeune, E. Hwang, J. C. Garno, E. E. Nesterov, and M. G. H. Vicente, Macromolecules 42, 2981 (2009).

    Article  Google Scholar 

  22. H.-N. Lin, H.-L. Lin, S.-S. Wang, L.-S. Yu, G.-Y. Perng, S.-A. Chen, and S.-H. Chen, Appl. Phys. Lett. 81, 2572 (2002).

    Article  Google Scholar 

  23. D. Xu, G. D. Watt, J. N. Harb, and R. C. Davis, Nano Lett. 5, 571 (2005).

    Article  Google Scholar 

  24. S. Thiruvengadam, Characterization and Analysis of Hybrid Electronic Materials for Molecular Based Devices, p. 109–112, Louisiana State University, Baton Rouge (2007).

    Google Scholar 

  25. J.-P. Yang and R. H. Callender, J. Raman Spectrosc. 16, 319 (1985).

    Article  Google Scholar 

  26. D. L. Akins, J. Colloid Interface Sci. 90, 373 (1982).

    Article  Google Scholar 

  27. B.-K. An, S.-K. Kwon, S.-D. Jung, and S. Y. Park, J. Am. Chem. Soc. 124, 14410 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theda Daniels-Race.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Kanakamedala, K., Jagadish, N.N. et al. Electro-optical characterization of cyanine-based GUMBOS and nanoGUMBOS. Electron. Mater. Lett. 10, 879–885 (2014). https://doi.org/10.1007/s13391-014-3347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-3347-8

Keywords

Navigation