Skip to main content
Log in

Ammonium sulfide surface treatment of electrodeposited p-type cuprous oxide thin films

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The effects of ammonium sulfide surface treatment on electrodeposited p-type polycrystalline cuprous oxide (Cu2O) thin films deposited on Ti substrates were studied. The structural and morphological properties of the films were investigated using scanning electron microscopy, x-ray diffraction, and energy-dispersive x-ray spectroscopy. The changes in the conductivities and photocurrents of the films after the ammonium sulfide treatment were determined. Films that had undergone the ammonium sulfide treatment showed reduced resistivities, enhanced spectral photoresponses, and enhanced current-voltage characteristics. The results showed that ammonium sulfide treatment improved the peak output current of the p-type Cu2O films by about 400% compared with those of bare Cu2O films. This improvement is attributed to the passivation of defects in the films by sulfur, showing that sulfur passivation provides a good method for improving of Cu2O-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. O. Grondahl, Science 64, 306 (1926).

    Article  Google Scholar 

  2. E. Duhme and W. Schottky, Naturwiss 18, 735 (1930).

    Article  Google Scholar 

  3. W. Schottky and F. Waibel, Phys. Z. 34, 858 (1933).

    Google Scholar 

  4. W. Schottky and F. Waibel, Phys. Z. 36, 912 (1935).

    Google Scholar 

  5. C. Wadia, A. P. Alivisatos, and D. M. Kammen, Environ. Sci. Technol. 43, 2072 (2009).

    Article  Google Scholar 

  6. L. C. Olsen, F. W. Addis, and W. Miller, Sol. Cells 7, 247 (1982).

    Article  Google Scholar 

  7. B. P. Rai, Sol. Cells 25, 265 (1988).

    Article  Google Scholar 

  8. J. A. Assimos and D. Trivich, J. Appl. Phys. 44, 1687 (1973).

    Article  Google Scholar 

  9. R. M. Habiger and A. Compaan, Solid State Commun. 18, 1531 (1976).

    Article  Google Scholar 

  10. R. N. Briskman, Sol. Energ. Mat. Sol. C. 27, 361 (1992).

    Article  Google Scholar 

  11. H. Xu, W. Wang, and W. Zhu, J. Phys. Chem. B. 110, 13829 (2006).

    Article  Google Scholar 

  12. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, Chem. Commun. 3, 357 (1998).

    Article  Google Scholar 

  13. H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, and B. Yu, Adv. Funct. Mater. 17, 2766 (2007).

    Article  Google Scholar 

  14. A. Chen, S. Haddad, Y.C. Wu, T. N. Fang, S. Kaza, and Z. Lan, Appl. Phys. Lett. 92, 013503 (2008).

    Article  Google Scholar 

  15. A. E. Rakhshani, Solid State Electron. 29, 7 (1986).

    Article  Google Scholar 

  16. K. M. D. C. Jayathilaka, W. Siripala, and J. K. D. S. Jayanetti, IPSL Proc. Technical Sessions of Institute of Physics (Sri Lanka). 23, 55 (2007).

    Google Scholar 

  17. X. Mathew, N. R. Mathews, and P. J. Sebastian, Sol. Energ. Mat. Sol. C. 70, 277 (2001).

    Article  Google Scholar 

  18. J. Massies, F. Dezaly, and N. T. Linh, J. Vac. Sci. Technol. 17, 1134 (1980).

    Article  Google Scholar 

  19. J. Massies, J. Chaplart, M. Laviron, and N. T. Linh, Appl. Phys. Lett. 38, 693 (1981).

    Article  Google Scholar 

  20. V. Montgomery, R. H. Williams, and G. P. Srivastava, J. Phys. C. 14, L191 (1981).

    Article  Google Scholar 

  21. J. R. Waldrop, Appl. Phys. Lett. 47, 1301 (1985).

    Article  Google Scholar 

  22. J. R. Waldrop, J. Vac. Sci. Technol. B. 3, 1197 (1985).

    Article  Google Scholar 

  23. C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987).

    Article  Google Scholar 

  24. S. Ishizuka S. Kato, Y. Okamoto, T. Sakurai, K. Akimoto, N. Fujiwara, and H. Kobayashi, Appl. Surf. Sci. 216, 94 (2003).

    Article  Google Scholar 

  25. S. Ishizuka, S. Kato, Y. Okamoto, and K. Akimoto, J. Crys. Grow. 237–239, 616 (2002).

    Article  Google Scholar 

  26. T. Mahalingam, J. S. P. Chitra, J. P. Chu, S. Velumani, and P. J. Sebastian, Sol. Energ. Mat. Sol. C. 88, 209 (2005).

    Article  Google Scholar 

  27. K. M. D. C. Jayathilaka, V. Kapaklis, W. Siripala, and J. K. D. S. Jayanetti, Semicond. Sci. Tech. 27, 125019 (2012).

    Article  Google Scholar 

  28. S. C. Lim, J. H. Jang, D. J. Bae, G. H. Han, S. Lee, I. S. Yeo, and Y. H. Lee, Appl. Phys. Lett. 95, 264103 (2009).

    Article  Google Scholar 

  29. W. Y. Yang and S. W. Rhee Appl. Phys. Lett. 91, 232907 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. D. S. Jayanetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayathilaka, K.M.D.C., Kapaklis, V., Siripala, W. et al. Ammonium sulfide surface treatment of electrodeposited p-type cuprous oxide thin films. Electron. Mater. Lett. 10, 379–382 (2014). https://doi.org/10.1007/s13391-013-3099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3099-x

Keywords

Navigation