Skip to main content
Log in

Density-controlled ZnO nanorod arrays in polymer solar cells based on Poly(3-hexylthiophene) and indene-C60 Bis-Adduct

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We investigated the effect of employing ZnO nanorods in an inverted polymer solar cell based on Poly(3-hexylthiophene) and Indene-C60 Bis-Adduct. Hydrothermal method was chosen to growth of vertically aligned ZnO nanorods on 30 nm thick ZnO seed layer. The samples were analyzed by x-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical conductivity measurements. Indene-C60 Bis-Adduct, as new acceptor with higher-lying LUMO energy level than PCBM blended with P3HT. Efficient infiltration of polymer into interspaces between nanorod arrays concluded to improved performance of the device. Photovoltaic characteristic of inverted polymer solar cell with ZnO nanorods were compared with devices employed ZnO thin film. Inverted polymer solar cell based on Poly (3-hexylthiophene) and Indene-C60 Bis-Adduct hybridized with ZnO nanorods exhibited power conversion efficiency of 4.04% that was better than a device with ZnO thin film interlayer (3.80%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).

    Article  CAS  Google Scholar 

  2. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).

    Article  CAS  Google Scholar 

  3. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1104 (2007).

    Article  Google Scholar 

  4. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics. 3, 297 (2009).

    Article  CAS  Google Scholar 

  5. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).

    Article  CAS  Google Scholar 

  6. F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, J. Larsen, and J. Kristensen, Sol. Energ. Mat. Sol. C. 93, 422 (2009).

    Article  CAS  Google Scholar 

  7. Y.-J. Cheng, C.-H. Hsieh, Y. He, C.-S. Hsu, and Y. Li, J. Am. Chem. Soc. 132, 17381 (2010).

    Article  CAS  Google Scholar 

  8. Z. Q. Xu, J. Li, J. P. Yang, P. P. Cheng, J. Zhao, S. T. Lee, Y. Q. Li, and J. X. Tang, Appl. Phys. Lett. 98, 253303 (2011).

    Article  Google Scholar 

  9. L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).

    Article  CAS  Google Scholar 

  10. M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).

    Article  Google Scholar 

  11. K. Norrman, S. A. Gevorgyan, and F. C. Krebs, ACS Appl. Mater. Interf. 1, 102 (2009).

    Article  CAS  Google Scholar 

  12. B. Paci, A. Generosi, V. R. Albertini, P. Perfetti, R. de Bettignies, M. Firon, J. Leroy, and C. Sentein, Appl. Phys. Lett. 87, 194110 (2005).

    Article  Google Scholar 

  13. Y. Sahin, S. Alem, R. deBettignies, and J. M. Nunzi, Thin Solid Films 476, 340 (2005).

    Article  CAS  Google Scholar 

  14. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503–1-3 (2006).

    Article  Google Scholar 

  15. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).

    Article  Google Scholar 

  16. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).

    Article  Google Scholar 

  17. H. H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 173303 (2008).

    Article  Google Scholar 

  18. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, Adv. Mater. 19, 2445 (2007).

    Article  CAS  Google Scholar 

  19. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).

    Article  Google Scholar 

  20. P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, Org. Electron. 11, 1419 (2010).

    Article  Google Scholar 

  21. T. Kuwabara, T. Nakashima, T. Yamaguchi, and K. Takahashi, Org. Res. 13, 1136 (2012).

    CAS  Google Scholar 

  22. K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001).

    Article  CAS  Google Scholar 

  23. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater. 23, 1679 (2011).

    Article  CAS  Google Scholar 

  24. L. Baeten, B. Conings, H.-G. Boye, J. D’Haen, A. Hardy, M. D’Olieslaeger, J. V. Manca, and M. K. Van Bael, Adv. Mater. 23, 2802 (2011)

    Article  CAS  Google Scholar 

  25. L. Vayssieres, Adv. Mater. 15, 464 (2003).

    Article  CAS  Google Scholar 

  26. J. S. Lee, M. Saif Islam, and S. Kim, Sensors and Actuators B. 126, 73 (2007).

    Article  CAS  Google Scholar 

  27. D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, J. Phys. Chem. C. 111, 16640 (2007).

    Article  CAS  Google Scholar 

  28. A. M. Peiró, P. Ravirajan, K. Govender, D. S. Boyle, P. O’Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, J. Mater. Chem. 16, 2088 (2006)

    Article  Google Scholar 

  29. I. Gonzalea-Valls and M. Lira-Cantu, Energy Environ. Sci. 2, 19 (2009).

    Article  Google Scholar 

  30. D. C. Olson, S. E. Shaheen, R. T. Collins, and D. S. Ginley, J. Phys. Chem. C. 111, 16670 (2007).

    Article  CAS  Google Scholar 

  31. K. Takanezawa, K. Tajima, and K. Hashimoto, Appl. Phys. Lett. 93, 063308 (2008).

    Article  Google Scholar 

  32. S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, J. Xi, K. Park, B. Limketkai, and G. Cao, J. Phys. Chem. C. 114, 21851 (2010).

    Article  CAS  Google Scholar 

  33. C.-T. Chen, F.-C. Hsu, S.-W. Kuan, and Y.-F. Chen, Sol Energ Mat. Sol. C. 95, 740 (2011).

    Article  CAS  Google Scholar 

  34. Y.-M. Sung, F.-C. Hsu, C.-T. Chen, W.-F. Su, and Y.-F. Chen, Sol. Energ Mat. Sol. C. 98, 103 (2012).

    Article  CAS  Google Scholar 

  35. Y.-J. Lee, M. T. Lloyd, D. C. Olson, R. K. Grubbs, P. Lu, R. J. Davis, J. A. Voigt, and J. W. P. Hsu, J. Phys. Chem. C. 113, 15778 (2009).

    Article  CAS  Google Scholar 

  36. W. I. Park and G. C. Yi, Adv. Mater. 16, 87 (2004).

    Article  CAS  Google Scholar 

  37. L. M. Li, Z. F. Du, C. C. Li, J. Zhang, and T. H. Wang, Nanotechnology 18, 355606 (2007).

    Article  Google Scholar 

  38. J. S. Jie, G. Z. Wang, Q. T. Wang, Y. M. Chen, X. H. Han, X. P. Wang, and J. G. Hou, J. Phys. Chem. B 108, 11976 (2004).

    Article  CAS  Google Scholar 

  39. A. E. Rakhshani, J. Appl. Phys. A. 92, 303 (2008).

    Article  CAS  Google Scholar 

  40. B. D. Yao, Y. F. Chan, and N. Wang, J. Appl. Phys. Lett. 81, 757 (2002).

    Article  CAS  Google Scholar 

  41. G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010).

    Article  CAS  Google Scholar 

  42. Y.-H. Lin, Y.-T. Tsai, C.-C. Wu, C.-H. Tsai, C.-H. Chiang, H.-F. Hsu, J.-J. Lee, and C.-Y. Cheng, Org. Electron. 13, 2333 (2012).

    Article  CAS  Google Scholar 

  43. Y. He, H.-Y. Chen, J. Hou, and Y. Li, J. Am. Chem. Soc. 132, 1377 (2010).

    Article  CAS  Google Scholar 

  44. J.-S. Huang and C.-F. Lin, J. Appl. Phys. 103, 014304 (2008).

    Article  Google Scholar 

  45. C.-S. Chen, P.-C. Yang, Y.-M. Shen, S.-Y. Ma, S.-C. Shiu, S.-C. Hung, S.-H. Lin, and C.-F. Lin, Sol. Energ Mat. Sol. C. 101, 180 (2012).

    Article  CAS  Google Scholar 

  46. Z. H. Lim, Z. X. Chia, M. Kevin, A. S.W. Wong, and G. W. Ho, Sensor Actuat B-Chem. 151, 121 (2010).

    Article  CAS  Google Scholar 

  47. J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Lin, and C. F. Lin, Org. Electron. 10, 1060 (2009).

    Article  CAS  Google Scholar 

  48. N. Sekine, C.-H. Chou, W. L. Kwan, and Y. Yang, Org Electron. 10, 1473 (2009).

    Article  CAS  Google Scholar 

  49. T.-H. Lee, H.-J. Sue, and X. Cheng, Nanotechnology 22, 285401 (2011).

    Article  Google Scholar 

  50. P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin, M. Gräetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, J. Phys. Chem. B. 110, 7635 (2006)

    Article  CAS  Google Scholar 

  51. K. Takanezawa, K. Hirota, Q. Wei, K. Tajima, and K. Hashimoto, J. Phys. Chem. C. 111, 7218 (2007).

    Article  CAS  Google Scholar 

  52. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar Cell Efficiency Tables (version 31), Prog. Photovoltaics: Res. Appl. 16, 61 (2008).

    Article  Google Scholar 

  53. R. Peng, C. Chen, W. Shen, M. Wang, Y. Guo, and H. Geng, Acta Phys. 58, 6582 (2009).

    CAS  Google Scholar 

  54. R. A. Street, K. W. Song, and S. R. Cowan, Org. Electron. 12, 244 (2011).

    Article  CAS  Google Scholar 

  55. K. Takanezawa, K. Tajima, and K. Hashimoto, Appl. Phys. Lett. 93, 063308 (2008).

    Article  Google Scholar 

  56. J.-Y. Chen, F.-C. Hsu, Y.-M. Sung, and Y.-F. Chen, J. Mater. Chem. 22 15726 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, M., Mirabbaszadeh, K. & Ketabchi, M. Density-controlled ZnO nanorod arrays in polymer solar cells based on Poly(3-hexylthiophene) and indene-C60 Bis-Adduct. Electron. Mater. Lett. 9, 729–734 (2013). https://doi.org/10.1007/s13391-013-2240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-2240-1

Keywords

Navigation