Skip to main content
Log in

Bulk heterojunction polymer solar cell, using ZnO nanorods with various mass ratios of P3HT:PCBM blend as the active layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study investigated the influence of employing various mass ratios of the P3HT:PCBM blend as an active layer using the doctor blade technique with a speed of 40 mm/s. ZnO nanostructure and ZnO nanorods (NRs) were utilized in an inverted bulk heterojunction organic solar cell as an electron transport layer. The temperature in annealing was 140 °C. The active layer played a significant role in increment hole mobility and balanced charge transport. The samples were examined by the X-ray diffraction, scanning electron microscopy, UV–visible transmission spectra. The use of P3HT:PCBM with a ratio of 1:0.9 on the top of the ZnO nanoparticles gave Jsc of 9.46 mm/s, Voc of 0.550 V, and a fill factor of 64.09% and resulted in a power conversion efficiency of 3.33%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Morirty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005)

    Article  ADS  Google Scholar 

  2. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222 (2007)

    Article  ADS  Google Scholar 

  3. S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1104 (2007)

    Article  Google Scholar 

  4. S.H. Park, A. Roy, S. Beapre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 3, 297 (2009)

    Article  ADS  Google Scholar 

  5. L.M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 21, 1434 (2009)

    Article  Google Scholar 

  6. G. Dennler, M.C. Schaber, C.J. Barbec, Adv. Mater. 21, 1103 (2009)

    Article  Google Scholar 

  7. C.J. Barbec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Adv. Mater. 22, 3839 (2010)

    Article  Google Scholar 

  8. Z.Q. Xu, J. Li, J.P. Yang, P.P. Cheng, J. Zho, S.T. Lee, Y.Q. Li, J.X. Tang, Appl. Phys. Lett. 98, 253303 (2011)

    Article  ADS  Google Scholar 

  9. Y.J. Cheng, C.H. Hsieh, Y. He, C.S. Hsu, Y. Li, J. Am. Chem. Soc. 132, 17381 (2010)

    Article  Google Scholar 

  10. L.M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 21, 434 (2009)

    Article  Google Scholar 

  11. M. Ahmadi, K. Mirabbaszadeh, M. Ketabchi, Electron. Mater. Lett. 9, 729 (2013)

    Article  ADS  Google Scholar 

  12. P. Junlabhuta, W. Mekprasartb, R. Noonurukb, Energy Proced. 56, 560 (2014)

    Article  Google Scholar 

  13. Y. Ning et al., J. Power Sources 195, 5806 (2010)

    Article  Google Scholar 

  14. S.C. Navale, I.S. Mulla, Mater. Sci. Eng. C 29, 1317 (2009)

    Article  Google Scholar 

  15. V. Manjula, M. Nirmala, K. Rekha, A. Anukaliani, Mater. Lett. 65, 1797 (2011)

    Article  Google Scholar 

  16. Z. Yuan, J. Yu, N. Wang, Y. Jiang, J. Mater. Sci. Mater. Electron. 22, 1730 (2011)

    Article  Google Scholar 

  17. K. Mirabbaszadeh, M. Ahmadi, M. Khosravi, R. Mokhtari, S. Salari, J. Inorg. Organomet. Polym. 23, 1219 (2013)

    Article  Google Scholar 

  18. Y.J. Lee, M.T. Lioyd, D.C. Olson, R.K. Grubbs, P. Lu, R.J. Davis, J.A. Voigt, J.W.P. Hsu, J. Phys. Chem. C 113, 15778 (2009)

    Article  Google Scholar 

  19. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  ADS  Google Scholar 

  20. J.X. Wang et al., Nanotechnology 17, 4995 (2006)

    Article  ADS  Google Scholar 

  21. Q. Wan et al., Appl. Phys. Lett. 84, 3654 (2004)

    Article  ADS  Google Scholar 

  22. Z. Fan, D. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, Appl. Phys. Lett. 85, 5923 (2004)

    Article  ADS  Google Scholar 

  23. Z. Fan, J.G. Lu, Appl. Phys. Lett. 86, 123510 (2005)

    Article  ADS  Google Scholar 

  24. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)

    Article  Google Scholar 

  25. M. Ahmadi, S. Rashidi Dafeh, Chin. Phys. B 24, 117203 (2015)

    Article  ADS  Google Scholar 

  26. R.A.J. Janssen, J.C. Hummelen, N.S. Saricifti, MRS Bull. 30, 33 (2005)

    Article  Google Scholar 

  27. K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima, K. Hashimoto, J. Phys. Chem. C. 111, 7218 (2007)

    Article  Google Scholar 

  28. K.M. Coakley, Y.X. Liu, C. Goh, M.D. McGehee, MRS Bull. 30, 37 (2005)

    Article  Google Scholar 

  29. S.R. Forrest, Nature 428, 911 (2004)

    Article  ADS  Google Scholar 

  30. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  31. H. Wang, Y. Zheng, L. Zhang, J. Yu, Sol. Energy Mater. Sol. Cells 128, 215 (2014)

    Article  Google Scholar 

  32. I. Hwang, C.R. McNeill, N.C. Greenham, Synth. Met. 189, 63 (2014)

    Article  Google Scholar 

  33. S.K. Jang, S.C. Gong, H.J. Chang, Synth. Met. 162, 426 (2012)

    Article  Google Scholar 

  34. Z. Hu, J. Zhang, S. Xiong, Y. Zhao, Sol. Energy Mater. Sol. Cells 99, 221 (2012)

    Article  Google Scholar 

  35. S.Y. Park, Y.J. Kang, S. Lee, D.G. Kim, J.K. Kim, J.H. Kim, J.W. Kang, Sol. Energy Mater. Sol. Cells 95, 852 (2011)

    Article  Google Scholar 

  36. F. Aziz, A.F. Ismail, M. Aziz, T. Soga, Chem. Eng. Process. Process Intensif. 79, 48 (2014)

    Article  Google Scholar 

  37. P. Kumar, K. Santhakumar, J. Tatsugi, P.K. Shin, S. Ochiai, Jpn. J. Appl. Phys. 53, 1 (2014)

    Google Scholar 

  38. J.H. Lee, T. Sagawa, S. Yoshikawa, Org. Electron. 12, 2165 (2011)

    Article  Google Scholar 

  39. J.H. Lee, T. Sagawa, S. Yoshikawa, Thin Solid Films 529, 464 (2013)

    Article  ADS  Google Scholar 

  40. K.X. Steirer, M.O. Reese, B.L. Rupert, N. Kopidakis, D.C. Olson, R.T. Collins, D.S. Ginley, Sol. Energy Mater. Sol. Cells 93, 447 (2009)

    Article  Google Scholar 

  41. Y.H. Chang, S.R. Tseng, C.Y. Chen, H.F. Meng, E.C. Chen, S.F. Horng, C.S. Hsu, Org. Electron. 10, 741 (2009)

    Article  Google Scholar 

  42. S.L. Lim, E.C. Chen, C.Y. Chen, K.H. Ong, Z.K. Chen, H.F. Meng, Sol. Energy Mater. Sol. Cells 107, 292 (2012)

    Article  Google Scholar 

  43. C. Yang, E. Zhou, S. Miyanishi, K. Hashimoto, K. Tajima, ACS Appl. Mater. Interfaces 3(10), 4053 (2011)

    Article  Google Scholar 

  44. Y. Sun, Y. Zhang, Q. Liang, Y. Zhang, H. Chi, Y. Shi, D. Fang, RSC. Adv. 3, 11925 (2013)

    Article  Google Scholar 

  45. S.I. Na, D.W. Park, S.S. Kim, S.Y. Yang, K. Lee, M.H. Lee, Semicond. Sci. Technol. 27, 1 (2012)

    Article  Google Scholar 

  46. A. Schneider, N. Traut, M. Hamburger, Sol. Energy Mater. Sol. Cells 126, 149 (2014)

    Article  Google Scholar 

  47. S.E. Shaheen, R. Radspinner, N. Peyghambarian, G.E. Jabbour, Appl. Phys. Lett. 79, 2996 (2001)

    Article  ADS  Google Scholar 

  48. P.T. Tsai, C.Y. Tsai, C.M. Wang, Y.F. Chang, H.F. Meng, Z.K. Chen, H.W. Lin, H.W. Zan, S.F. Horng, Y.C. Lai, P. Yu, Org. Electron. Phys. Mater. Appl. 15, 893 (2014)

    Google Scholar 

  49. M. Ahmadi, D. Rashidi, Indian J. Phys. 15, 819 (2016)

    Google Scholar 

  50. S. Salari, M. Ahmadi, K. Mirabbaszadeh, Electron. Mater. Lett. 10(1), 13 (2014)

    Article  Google Scholar 

  51. J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247, 119 (2003)

    Article  ADS  Google Scholar 

  52. R.A. Asmar, D. Zaouk, P. Bahouth, J. Podlki, A. Foucaran, Microelectron. Eng. 83, 393 (2006)

    Article  Google Scholar 

  53. F.C. Krebs, K. Norrman, Res. Appl. 15, 697 (2007)

    Google Scholar 

  54. W. Hyuk Baek, H. Yang, T. Sik Yoon, C.J. Kang, H.H. Lee, Y. Sang Kim, Sol. Energy Sol. Cells 93, 1263 (2009)

    Article  Google Scholar 

  55. F.C. Kerbs, Sol. Energy Mater. Sol. Cells 92, 715 (2008)

    Article  Google Scholar 

  56. M. Lenes, L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett. 88, 093511 (2006)

    Article  ADS  Google Scholar 

  57. B.C. Thompson, J.M.J. Frechet, Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shafiey Dehaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Shafiey Dehaj, M., Ghazanfarpour, S. et al. Bulk heterojunction polymer solar cell, using ZnO nanorods with various mass ratios of P3HT:PCBM blend as the active layer. Appl. Phys. A 125, 604 (2019). https://doi.org/10.1007/s00339-019-2882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2882-4

Navigation