Skip to main content
Log in

High temperature capacitors using a BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

BiScO3-BaTiO3 with (K1/2Bi1/2)TiO3 [BSBT-KBTx] in the perovskite solid solution system were prepared by conventional ceramic processing for potential high temperature capacitors. The effect of KBT on the dielectric properties of BSBT was investigated as a function of temperature and frequency. The BSBT-KBT20 exhibited high dielectric permittivity and low dielectric loss over the temperature range from 100°C to 300°C with flat coefficients of temperature (TCɛs). In addition, BSBT-KBTx were observed to possess dielectric relaxation behavior at temperatures (> RT) as observed in lead-based relaxors. Furthermore, the E-field polarization behavior was investigated showing high energy density of 1.28 J/cm3 at 100 kV/cm for the BSBT-KBT20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sugimoto, IEEE Electrical Insulation Magazine 5, 15 (1989).

    Article  Google Scholar 

  2. R. S. Demcko, Proc. 39 th IEEE Electronic Components Conf., 390 (1988).

  3. B. Jaffe, W. R. Cook, and H. Jaffe, London and New York: Academic Press 317, 550 (1971).

  4. D. Hennings, A. Schnell, and G. Simon, J. Am. Ceram. Soc. 65, 539 (1982).

    Article  CAS  Google Scholar 

  5. Y. Okino, N. Kohzu, Y. Mizuno, M. Honda, H. Chazono, and H. Kishi, Key Eng. Mater. 157, 9 (1999).

    Article  Google Scholar 

  6. D. Tinberg, and S. T. McKinstry, J. Appl. Phys. 101, 024112 (2007).

    Article  Google Scholar 

  7. H. Y. Guo, C. Lei, and Z. G. Ye, Appl. Phys. Lett. 92, 172901 (2008).

    Article  Google Scholar 

  8. H. Ogihara, S. T. McKinstry, and C. A. Randall, Fall Meeting in Center for Dielectric Studies, State College, USA (2007)

  9. C. F. Buhrer, J. Chem. Phys. 36, 798 (1962).

    Article  CAS  Google Scholar 

  10. Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 44, 5040 (2005).

    Article  CAS  Google Scholar 

  11. H. Y. Park, K. H. Cho, D. S. Paik, S. Nahm, H. G. Lee, D. H. Kim, J. Appl. Phys. Lett. 102, 124101 (2007).

    Google Scholar 

  12. N. Setter, and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).

    Article  CAS  Google Scholar 

  13. J. C. Nino, Ph. D. Thesis, The Pennsylvania State University, USA (2002).

  14. C. J. Stringer, Ph. D. Thesis, The Pennsylvania State University, USA (2006).

  15. D. Viehland, S. J. Jang, and L. E. Cross, J. Appl. Phys. 68, 2916(1990).

    Article  CAS  Google Scholar 

  16. B. Jaffe, Proc. IRE. 49, 1264 (1961).

    Article  Google Scholar 

  17. G. J. HILL, Proc. Brit. Ceram. Soc. 18, 201 (1970).

    Google Scholar 

  18. G. R. Love, J. Am. Ceram. Soc. 73, 323 (1990).

    Article  CAS  Google Scholar 

  19. A. J. Moulson, and J. M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd ed., John Wiley & Sons Ltd. New York (2003).

    Google Scholar 

  20. T. R. Shrout, R. Eitel, and C. A. Randall, Piezoelectric Materials in Devices, (ed., N. Setter), p. 413, Lausanne, Switzerland (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Bong Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J.B., Zhang, S. & Shrout, T.R. High temperature capacitors using a BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system. Electron. Mater. Lett. 7, 71–75 (2011). https://doi.org/10.1007/s13391-011-0311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-011-0311-8

Keywords

Navigation