Skip to main content
Log in

High-temperature dielectrics based on (1 − x)[0.94Bi0.5Na0.5TiO3–0.06BaTiO3–0.03AgNbO3]–xK0.5Na0.5NbO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High temperature dielectrics based on (1 − x)[0.94Bi0.5Na0.5TiO3–0.06BaTiO3–0.03AgNbO3]–xK0.5Na0.5NbO3 (BNTBTAN–100xKNN, x = 0.01, 0.02, 0.03, 0.04) are prepared. The effects of K0.5Na0.5NbO3 contents on temperature stability of dielectric properties of BNTBTAN–100xKNN ceramics in the temperature range between 25 and 500 °C are studied. By incorporation of certain amount of AgNbO3, the required K0.5Na0.5NbO3 contents to disrupt the correlation among polar nanoregions in Bi0.5Na0.5TiO3 is reduced, thus this system not only has stable permittivity, but more importantly, behaves high insulting behavior, leading to the lower dielectric loss at high temperature. In particular, BNTBTAN–4KNN exhibits high dielectric permittivity (~ 2452), low dielectric loss (≤ 0.02) in the temperature range between 126 and 319 °C and small variation (Δε′/ε′150 °C ≤ 15%) in dielectric permittivity from 51 to 371 °C. Therefore, our work provides a new promising candidate of materials for capacitors which can be operated at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Watson, G. Castro, A review of high-temperature electronics technology and applications. J. Mater. Sci.: Mater. Electron. 26, 9226–9235 (2015)

    CAS  Google Scholar 

  2. M.J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26, 44–50 (2010)

    Article  CAS  Google Scholar 

  3. M. Acosta, J.D. Zang, W. Jo, J. Rödel, High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 32, 4327–4334 (2012)

    Article  CAS  Google Scholar 

  4. R. Muhammad, Y. Iqbal, I.M. Reaney, C. Randall, BaTiO3-Bi (Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 99, 2089–2095 (2016)

    Article  CAS  Google Scholar 

  5. B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, J.F. Scott, X.R. Zeng, H.T. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015)

    Article  Google Scholar 

  6. T.Y. Li, X.J. Lou, X.Q. Ke, S.D. Cheng, S.B. Mi, X.J. Wang, J. Shi, X. Liu, G.Z. Dong, H.Q. Fan, Y.Z. Wang, X.L. Tan, Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater. 128, 337–344 (2017)

    Article  CAS  Google Scholar 

  7. J. Shi, H.Q. Fan, X. Liu, Q. Li, Giant strain response and structure evolution in (Bi0.5Na0.5)0.945-x(Bi0.2Sr0.70.1)xBa0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34, 3675–3683 (2014)

    Article  CAS  Google Scholar 

  8. C.W. Cui, Y.P. Pu, Z.Y. Gao, J. Wan, Y.S. Guo, C.Y. Hui, Y.R. Wang, Y.F. Cui, Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys Compd. 711, 319–326 (2017)

    Article  CAS  Google Scholar 

  9. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007)

    Article  Google Scholar 

  10. R. Garg, B. Rao, A. Senyshyn, P. Krishna, R. Ranjan, Lead-free piezoelectric system (Bi1/2Na1/2)TiO3-BaTiO3: equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact. Phys. Rev. B 88, 2358–2367 (2013)

    Article  Google Scholar 

  11. W.F. Bai, D.Q. Chen, P. Zheng, B. Shen, J.W. Zhai, Z.G. Ji, Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. Dalton Trans. 45, 8573–8586 (2016)

    Article  CAS  Google Scholar 

  12. J.D. Zang, W. Jo, H.B. Zhang, J. Rödel, Bi1/2Na1/2TiO3–BaTiO3 based thick-film capacitors for high-temperature applications. J. Eur. Ceram. Soc. 34, 37–43 (2014)

    Article  CAS  Google Scholar 

  13. W.X. Jia, Y.D. Hou, M.P. Zheng, M.K. Zhu, High-temperature dielectrics based on (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xNaNbO3 system. J. Alloys Compd. 724, 306–315 (2017)

    Article  CAS  Google Scholar 

  14. J.D. Zang, M. Li, D.C. Sinclair, W. Jo, J. Rödel, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J. Am. Ceram. Soc. 97, 1523–1529 (2014)

    Article  CAS  Google Scholar 

  15. P. Sciau, A. Kania, B. Dkhil, E. Suard, A. Ratuszna, Structural investigation of AgNbO3 phases using X-ray and neutron diffraction. J. Phys.: Condens. Matter 16, 2795–2810 (2004)

    CAS  Google Scholar 

  16. Z.C. Liu, P.R. Ren, C.B. Long, X. Wang, Y.H. Wan, G.Y. Zhao, Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017)

    Article  CAS  Google Scholar 

  17. J. East, D.C. Sinclair, Characterization of (Bi1/2Na1/2)TiO3 using electric modulus spectroscopy. J. Mater. Sci. Lett. 16, 422–425 (1997)

    Article  CAS  Google Scholar 

  18. Y.M. Li, W. Chen, J. Zhou, Q. Xu, X.Y. Gu, R.H. Liao, Impedance spectroscopy and dielectric properties of Na0.5Bi0.5TiO3–NaNbO3 ceramics. Physica B 365, 76–81 (2005)

    Article  CAS  Google Scholar 

  19. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014)

    Article  CAS  Google Scholar 

  20. M. Cernea, A. Galca, M. Cioangher, C. Dragoi, G. Ioncea, Piezoelectric BNT–BT0.11 thin films processed by sol–gel technique. J. Mater. Sci. 46, 5621–5627 (2011)

    Article  CAS  Google Scholar 

  21. M. Cernea, L. Trupina, C. Dragoi, A.-C. Galca, L. Trinca, Structural, optical, and electric properties of BNT–BT0.08 thin films processed by sol-gel technique. J. Mater. Sci. 47, 6966–6971 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province, Scientific and Technological Project of Yulin City (2016-16-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengrong Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, P., He, J., Wang, X. et al. High-temperature dielectrics based on (1 − x)[0.94Bi0.5Na0.5TiO3–0.06BaTiO3–0.03AgNbO3]–xK0.5Na0.5NbO3. J Mater Sci: Mater Electron 29, 17016–17021 (2018). https://doi.org/10.1007/s10854-018-9798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9798-1

Navigation