Skip to main content
Log in

Existence of positive solutions for variable exponent elliptic systems with multiple parameters

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper, we consider the system of differential equations

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l@{\quad }l} -\Delta _{p(x)} u=\lambda ^{p(x)}[\lambda _{1}f(v)+\mu _{1}h(u)] &{} \mathrm{in }\, \Omega , \\ -\Delta _{p(x)} v=\lambda ^{p(x)}[\lambda _{2}g(u)+\mu _{2}\tau (v)] &{} \mathrm{in }\,\Omega , \\ u=v=0 &{} \mathrm{on }\,\partial \Omega ,\\ \end{array}\right. \end{aligned}$$

where \(\Omega \subset \mathbb R ^N\) is a bounded domain with \(C^2\) boundary \(\partial \Omega \) and \(1<p(x)\in C^{1}(\overline{\Omega })\) is a function. The operator \(-\Delta _{p(x)} u = -\mathrm{div}(|\nabla u|^{p(x)-2}\nabla u)\) is called the \(p(x)\)-Laplacian, \(\lambda ,\,\lambda _{1},\,\lambda _{2},\,\mu _{ 1}\) and \(\mu _{2}\) are positive parameters. Using the sub-supersolutions method, we prove the existence of positive solutions if

$$\begin{aligned} \lim _{u \rightarrow +\infty }\frac{f[M(g(u))^\frac{1}{p^--1}]}{u^{p^--1}} = 0, \quad \forall M > 0, \end{aligned}$$
$$\begin{aligned} \lim _{u \rightarrow +\infty } \frac{h(u)}{u^{p^-- 1}} = 0, \quad \lim _{u \rightarrow +\infty } \frac{\tau (u)}{u^{p^- - 1}} = 0. \end{aligned}$$

In particular, we do not assume any symmetry condition, and we do not assume any sign condition on \(f(0), g(0), h(0)\) or \(\tau (0)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156, 121–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Afrouzi, G.A., Ghorbani, H.: Positive solutions for a class of \(p(x)\)-Laplacian problems. Glasgow Math. J. 51, 571–578 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ali, J., Shivaji, R.: Positive solutions for a class of \(p\)-Laplacian systems with multiple parametes. J. Math. Anal. Appl. 335, 1013–1019 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, M.: On positive weak solutions for a class of quasilinear elliptic systems. Nonlinear Anal. 62, 751–756 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coscia, A., Mingione, G.: Hölder continuity of the gradient of \(p(x)\)-harmonic mappings. C. R. Acad. Sci. Ser. I-Math. 328, 363–368 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan, X.L.: Global \(C^{1,\alpha }\) regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 235, 397–417 (2007)

    Article  MATH  Google Scholar 

  9. Fan, X.L.: On the sub-supersolution method for \(p(x)\)-Laplacian equations. J. Math. Anal. Appl. 330, 665–682 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fan, X.L., Zhang, Q.H.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fan, X.L., Zhang, Q.H., Zhao, D.: Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306–317 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hai, D.D., Shivaji, R.: An existence result on positive solutions of \(p\)-Laplacian systems. Nonlinear Anal. 56, 1007–1010 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. El Hamidi, A.: Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl. 300, 30–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin (2002)

    Google Scholar 

  15. Samko, S.G.: Densness of \(C_{0}^{\infty }(^{N})\) in the generalized Sobolev spaces \(W^{m, p(x)}(^{N})\). Dokl. Ross. Akad. Nauk. 369(4), 451–454 (1999)

    MathSciNet  Google Scholar 

  16. Zhang, Q.H.: Existence of positive solutions for a class of \(p(x)\)-Laplacian systems. J. Math. Anal. Appl. 333, 591–603 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, Q.H.: A strong maximum principle for differential equations with nonstandard \(p(x) \)-growth conditions. J. Math. Anal. Appl. 312, 24–32 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang, Q.H.: Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems. Nonlinear Anal. 70, 305–316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang, Q.H.: Existence of positive solutions for elliptic systems with nonstandard \(p(x) \)-growth conditions via sub-supersolution method. Nonlinear Anal. 67, 1055–1067 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for a very careful reading of the manuscript and for making good suggestions for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Afrouzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afrouzi, G.A., Shakeri, S. & Chung, N.T. Existence of positive solutions for variable exponent elliptic systems with multiple parameters. Afr. Mat. 26, 159–168 (2015). https://doi.org/10.1007/s13370-013-0196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-013-0196-9

Keywords

Mathematics Subject Classification (2000)

Navigation