Skip to main content
Log in

Quantized Orthogonal Experimentation SSA (QOX-SSA): A Hybrid Technique for Feature Selection (FS) and Neural Network Training

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The standard metaheuristics are commonly based on a single metaphorical model miming a particular animal group's food-searching behaviour. As a result, the contributions of such approaches are becoming inadequate in dealing with the evolving complexities of optimizing objective functions. Salp Swarm Algorithm (SSA) is one of them, a new swarm intelligence-based technique relying on a lone metaphor introduced for tackling global optimization issues. Nonetheless, SSA has garnered substantial acknowledgement and attraction among the research community because it is easy to implement and requires few control parameters to fine-tune. However, the typical SSA encounters confinement issues in local optima and an insufficient convergence pace when confronted with more intricate scenarios due to deficient population diversity, local exploitation, and global exploration. Therefore, this research integrates a Quantized Orthogonal Experimentation (QOX) operator to enhance population variety and intensify SSA's local exploitation and global explorative potential. The resulting hybrid approach is named QOX-SSA. QOX-SSA's optimization skill is demonstrated using 14 fundamental and 30 advanced benchmark problems of IEEE-CEC-2014 and comparing its effectiveness to some contemporary metaheuristics. Three nonparametric tests are conducted to verify the statistical importance of QOX-SSA's results. Furthermore, the applicability of QOX-SSA is examined by implementing it to train the Radial Basis Function Neural Network to classify data and resolve problems related to optimal feature selection. Experimental outcomes of QOX-SSA over different optimization issues confirm its superior performance compared to SSA and the alternate metaheuristics used for comparative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RBFNN:

Radial basis function neural network

HCEF:

High-conditioned elliptic function

BCF:

Bent-cigar function

DF:

Discuss function

RBF:

Rosenbrock's function

AF:

Ackley's function

WF:

Weierstrass function

GF:

Griewank's function

RF:

Rastrigin's function

SF:

Schwefel's function

KF:

Katsuura function

HCF:

HappyCat function

HGBF:

HGBat function

EGRF:

Expanded Griewank's plus Rosenbrock's function

ESF6:

Expanded Schaffer's F6 function

Iono:

Ionosphere

WBC:

Wisconsin breast cancer

Pima:

Pima Indian diabetes

Heart:

Heart

E. coli:

E. coli

liver:

Liver

Hepa:

Hepatitis

References

  1. Singh, R.; Kaur, R.: A novel archimedes optimization algorithm with levy flight for designing microstrip patch antenna. Arab. J. Sci. Eng. 47(3), 3683–3706 (2022)

    Article  Google Scholar 

  2. Zhan, Z.H.; Shi, L.; Tan, K.C.; Zhang, J.: A survey on evolutionary computation for complex continuous optimization. Artif. Intell. Rev. 55(1), 1–52 (2021)

    Google Scholar 

  3. Neiger, V.; Pernet, C.: Deterministic computation of the characteristic polynomial in the time of matrix multiplication. J. Complex. 67, 101572 (2021)

    Article  MathSciNet  Google Scholar 

  4. Acevedo, J.; Pistikopoulos, E.N.: Stochastic optimization based algorithms for process synthesis under uncertainty. Comput. Chem. Eng. 22(4–5), 647–671 (1998)

    Article  Google Scholar 

  5. Li, C.; Grossmann, I.E.: A review of stochastic programming methods for optimization of process systems under uncertainty. Frontiers in Chemical Engineering 2, 34 (2021)

    Article  Google Scholar 

  6. Kennedy, J; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE. (1995)

  7. Storn, R.: Differrential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical report. International Computer Science Institute, 11. (1995)

  8. Wolpert, D.H.; Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  9. Panda, N.; Majhi, S.K.; Pradhan, R.: A hybrid approach of spotted hyena optimization integrated with quadratic approximation for training wavelet neural network. Arab. J. Sci. Eng. 47(8), 1–17 (2022)

    Article  Google Scholar 

  10. Ramana, B.V.; Panda, N.S.; Mohapatra, H.; Dalai, A.K.; Majhi, S.K.: Improved chaotic grey wolf optimization for training neural networks. J. Sci. Ind. Res. 82(11), 1193–1207 (2023)

    Google Scholar 

  11. Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H.: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 181, 115079 (2021)

    Article  Google Scholar 

  12. Lazić, L.J.U.B.O.M.I.R.: Use of orthogonal arrays and design of experiments via Taguchi methods in software testing. Recent Adv. Appl. Theor. Math. 23(2), 256–267 (2013)

    Google Scholar 

  13. Tang, A.; Gong, P.; Huang, Y.; Xiong, R.; Hu, Y.; Feng, R.: Orthogonal design based pulse preheating strategy for cold lithium-ion batteries. Appl. Energy 355, 122277 (2024)

    Article  Google Scholar 

  14. Liang, J.J.; Qu, B.Y.; Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635, p 490. (2013)

  15. Oyang, Y.J.; Hwang, S.C.; Ou, Y.Y.; Chen, C.Y.; Chen, Z.W.: Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Trans. Neural Networks 16(1), 225–236 (2005)

    Article  Google Scholar 

  16. Chandrashekar, G.; Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  17. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  18. Singh, N.; Houssein, E.H.; Singh, S.B.; Dhiman, G.: HSSAHHO: a novel hybrid Salp swarm-Harris hawks optimization algorithm for complex engineering problems. J. Ambient. Intell. Humaniz. Comput. 14(9), 11569–11605 (2023)

    Article  Google Scholar 

  19. Mohamed, A.A.; Abdellatif, A.D.; Alburaikan, A.; Khalifa, H.A.E.W.; Elaziz, M.A.; Abualigah, L.; AbdelMouty, A.M.: A novel hybrid arithmetic optimization algorithm and salp swarm algorithm for data placement in cloud computing. Soft. Comput. 27(9), 5769–5780 (2023)

    Article  Google Scholar 

  20. Alkoffash, M.S.; Awadallah, M.A.; Alweshah, M.; Zitar, R.A.; Assaleh, K.; Al-Betar, M.A.: A non-convex economic load dispatch using hybrid salp swarm algorithm. Arab. J. Sci. Eng. 46(9), 8721–8740 (2021)

    Article  Google Scholar 

  21. Kundu, T.; Jain, P.K.: A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems. Appl. Intell. 52(11), 1–38 (2022)

    Article  Google Scholar 

  22. Kamel, S.; Ebeed, M.; Jurado, F.: An improved version of salp swarm algorithm for solving optimal power flow problem. Soft. Comput. 25(5), 4027–4052 (2021)

    Article  Google Scholar 

  23. Gupta, S.; Deep, K.; Heidari, A.A.; Moayedi, H.; Chen, H.: Harmonized salp chain-built optimization. Eng. Comput. 37(2), 1049–1079 (2021)

    Article  Google Scholar 

  24. Panda, N.; Majhi, S.K.: Improved salp swarm algorithm with space transformation search for training neural network. Arab. J. Sci. Eng. 45(4), 2743–2761 (2020)

    Article  Google Scholar 

  25. Zhang, Q.; Leung, Y.W.: An orthogonal genetic algorithm for multimedia multicast routing. IEEE Trans. Evol. Comput. 3(1), 53–62 (1999)

    Article  Google Scholar 

  26. Leung, Y.W.; Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 5(1), 41–53 (2001)

    Article  Google Scholar 

  27. Zhan, Z.H.; Zhang, J.; Li, Y.; Shi, Y.H.: Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 15(6), 832–847 (2010)

    Article  Google Scholar 

  28. Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: Quantized salp swarm algorithm (QSSA) for optimal feature selection. Int. J. Inf. Technol. 15(2), 725–734 (2023)

    Google Scholar 

  29. Alsubai, S.; Dutta, A.K.; Alkhayyat, A.H.; Jaber, M.M.; Abbas, A.H.; Kumar, A.: Hybrid deep learning with improved salp swarm optimization based multi-class grape disease classification model. Comput. Electr. Eng. 108, 108733 (2023)

    Article  Google Scholar 

  30. Qaraad, M.; Amjad, S.; Hussein, N.K.; Elhosseini, M.A.: Large scale salp-based grey wolf optimization for feature selection and global optimization. Neural Comput. Appl. 34(11), 8989–9014 (2022)

    Article  Google Scholar 

  31. Alsaleh, A.; Binsaeedan, W.: The influence of salp swarm algorithm-based feature selection on network anomaly intrusion detection. IEEE Access 9, 112466–112477 (2021)

    Article  Google Scholar 

  32. Tubishat, M.; Ja’afar, S.; Alswaitti, M.; Mirjalili, S.; Idris, N.; Ismail, M.A.; Omar, M.S.: Dynamic salp swarm algorithm for feature selection. Expert Syst. Appl. 164, 113873 (2021)

    Article  Google Scholar 

  33. Shekhawat, S.S.; Sharma, H.; Kumar, S.; Nayyar, A.; Qureshi, B.: bSSA: binary salp swarm algorithm with hybrid data transformation for feature selection. IEEE Access 9, 14867–14882 (2021)

    Article  Google Scholar 

  34. Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: Hybrid PSO (SGPSO) with the Incorporation of discretization operator for training RBF neural network and optimal feature selection. Arab. J. Sci. Eng. 48(8), 9991–10019 (2023)

    Article  Google Scholar 

  35. Yang, X.; Li, Y.; Sun, Y.; Long, T.; Sarkar, T.K.: Fast and robust RBF neural network based on global K-means clustering with adaptive selection radius for sound source angle estimation. IEEE Trans. Antennas Propag. 66(6), 3097–3107 (2018)

    Google Scholar 

  36. Li, T.; Liu, X.; Lin, Z.; Morrison, R.: Ensemble offshore wind turbine power curve modelling–an integration of isolation forest, fast radial basis function neural network, and metaheuristic algorithm. Energy 239, 122340 (2022)

    Article  Google Scholar 

  37. Kaur, A.; Pal, S.K.; Singh, A.P.: Hybridization of K-means and firefly algorithm for intrusion detection system. Int. J. Syst. Assur. Eng. Manag. 9(4), 901–910 (2018)

    Article  Google Scholar 

  38. Taguchi, G.; Konishi, S.: Orthogonal arrays and linear graphs. American Supplier Institute, Dearborn (1986)

    Google Scholar 

  39. Kacker, R.N.; Lagergren, E.S.; Filliben, J.J.: Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Nat. Inst. Stand. Technol. 96(5), 577 (1991)

    Article  Google Scholar 

  40. Mongomery, D.C.: Montgomery: design and analysis of experiments. John Willy Sons (2017)

    Google Scholar 

  41. Hicks, C.R.: Fundamental concepts in the design of experiments. (1964)

  42. Hedayat, A.S.; Sloane, N.J.A.; Stufken, J.: Orthogonal arrays: theory and applications. Springer (2012)

    Google Scholar 

  43. Bari, A.; Zhao, R.; Pothineni, J.S.; Saravanan, D.: Swarm Intelligence Algorithms and Applications: An Experimental Survey. In: International Conference on Swarm Intelligence (pp. 3–17). Cham: Springer Nature Switzerland. (2023)

  44. Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q.: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm Evol. Comput. 77, 101248 (2023)

    Article  Google Scholar 

  45. Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  46. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  47. Yang, X.S.; Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)

    Google Scholar 

  48. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-insp. Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  49. Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  50. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  Google Scholar 

  51. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)

    Article  MathSciNet  Google Scholar 

  52. F Distribution Table, March 2018. Retrieved from http://www.socr.ucla.edu/applets.dir/f_table.html

  53. NormalDistributionTable.Retrievedfromhttp://math.arizona.edu/~rsims/ma464/standardnormaltable.pdf

  54. Mahapatra, A.K.; Panda, N.; Pattanayak, B.K.: An improved pathfinder algorithm (ASDR-PFA) based on adaptation of search dimensional ratio for solving global optimization problems and optimal feature selection. Progress Artif. Intell. 12(4), 323–348 (2023)

    Article  Google Scholar 

  55. Broomhead, D.S; Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment Malvern (United Kingdom). (1988)

  56. Ahmed, A.; Hussein, S.E.: Leaf identification using radial basis function neural networks and SSA based support vector machine. PLoS ONE 15(8), e0237645 (2020)

    Article  Google Scholar 

  57. Qian, X.; Huang, H.; Chen, X.; Huang, T.: Efficient construction of sparse radial basis function neural networks using L1-regularization. Neural Netw. 94, 239–254 (2017)

    Article  Google Scholar 

  58. Hu, L.; Li, R.; Xue, T.; Liu, Y.: Neuro-adaptive tracking control of a hypersonic flight vehicle with uncertainties using reinforcement synthesis. Neurocomputing 285, 141–153 (2018)

    Article  Google Scholar 

  59. Qtaish, A.; Braik, M.; Albashish, D.; Alshammari, M.T.; Alreshidi, A.; Alreshidi, E.J.: Optimization of K-means clustering method using hybrid capuchin search algorithm. J. Supercomput. 80(2), 1–60 (2023)

    Google Scholar 

  60. Van der Merwe, D.W.; Engelbrecht, A.P.: December. Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 1, pp. 215–220). IEEE. (2003)

  61. Pan, Z.; Wang, Y.; Pan, Y.: A new locally adaptive k-nearest neighbour algorithm based on discrimination class. Knowl.-Based Syst. 204, 106185 (2020)

    Article  Google Scholar 

  62. Bache, K.; Lichman, M.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California. School of information and computer science, 28. (2013)

  63. Abdelhamid, A.A.; El-Kenawy, E.S.M.; Ibrahim, A.; Eid, M.M.; Khafaga, D.S.; Alhussan, A.A.; Mirjalili, S.; Khodadadi, N.; Lim, W.H.; Shams, M.Y.: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms. IEEE Access. 11, 79750–79776 (2023)

    Article  Google Scholar 

  64. Navazi, F.; Yuan, Y.; Archer, N.: An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Anal. 4, 100227 (2023)

    Article  Google Scholar 

  65. Hegazy, A.E.; Makhlouf, M.A.; El-Tawel, G.S.: Feature selection using chaotic salp swarm algorithm for data classification. Arab. J. Sci. Eng. 44(4), 3801–3816 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibedan Panda.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, A.K., Panda, N. & Pattanayak, B.K. Quantized Orthogonal Experimentation SSA (QOX-SSA): A Hybrid Technique for Feature Selection (FS) and Neural Network Training. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09113-3

Keywords

Navigation