Skip to main content
Log in

A Parallel-Effect Combination of Absorption and Adsorption Cooling as a First Step Toward Uninterrupted Hybrid Sorption Refrigeration

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The design integration of absorption and adsorption cooling systems is a recently emerging research field in which the inherent advantages of both these systems are intended to be combined so as to maximize system performance. However, a vast majority of the conventional integration approaches reported in the literature still suffer from the following drawbacks: (a) the inability to provide a continuous cooling effect of the integrated design during the switching period of the adsorption component, (b) the lack of incorporation of the mass/heat recovery cycles and its subsequent effects upon the integrated performance, and (c) the lack of functional dependence of all thermodynamic variables including heat capacities and adsorption enthalpy upon operational parameters such as temperature and pressure. This study presents the first attempt of a numerically validated performance prediction of such an integrated system with parallel functionality to facilitate a continuous cooling operation. An empirical model of mass recovery cycle has been formulated for the very first time which adequately describes the sorption dynamics during mass transfer. All thermodynamic variables have been expressed as functions of operational parameters during the cooling cycle. For a mean driving temperature predicted to be as low as 38 °C and a mean cycle time of 11.82 min, the proposed integrated design has been predicted to yield a cycle-averaged specific cooling power of 48.93 W kg−1 and a minimum achievable coefficient of performance of 0.74 compared to the corresponding values of 27.64 W kg−1 and 0.57 for the benchmark stand-alone silica gel/water adsorption chiller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(A\) :

Heat transfer area (\({{\text{m}}}^{2}\))

\({C}_{p}\) :

Specific heat capacity (\({{{\text{J}\,\text{kg}}}}^{-1}\,{{\text{K}}}^{-1}\))

\({D}_{{\text{s}}0}\) :

Pre-exponential constant for surface diffusion (\({{\text{m}}}^{2}\,{{\text{s}}}^{-1}\))

\(E\) :

Activation energy (\({{{\text{J}\,\text{mol}}}}^{-1}\))

\({\text{MR}}\) :

Mass recovery

\(\dot{m}\) :

Mass flow rate (\({\text{kg}}\,\text{s}^{-1}\))

\(P\) :

Water vapor pressure (\({\text{Pa}}\))

\(R\) :

Molar gas constant (\({{{\text{J}\,\text{mol}}}}^{-1}\,{{\text{K}}}^{-1}\))

\({R}_{{\text{p}}}\) :

Average particle radius (\({\text{m}}\))

\(T\) :

Temperature (\({\text{K}}\))

\(U\) :

Overall heat transfer coefficient (\({{{\text{W}\,\text{m}}}}^{-2}\break{{\text{K}}}^{-1}\))

\(t\) :

Time (\({\text{s}}\))

\({\text{HR}}\) :

Heat recovery

\(\Delta H\) :

Isosteric heat of adsorption (\({{{\text{J}\,\text{kg}}}}^{-1}\))

\(\Delta L\) :

Latent heat of vaporization (\({{{\text{J}\,\text{kg}}}}^{-1}\))

\({\Delta x}^{*}\) :

Equilibrium amount of vapor refrigerant ad-/desorbed (\({{{\text{kg}\,\text{kg}}}}^{-1}\))

\(K\) :

Thermal conductivity (\({{{\text{W}\,\text{m}}}}^{-1}\,{{\text{K}}}^{-1}\))

\({\text{ABS}}\) :

Absorption

\(X\) :

Concentration of LiBr/water sol. (wt%)

\({\text{SG}}\) :

Silica gel

\(b\) :

Bed

\({\text{HWST}}\) :

Hot water storage tank

\({\text{des}}/{\text{DES}}\) :

Desorption

\({\text{evap}}\) :

Evaporator

\(v\) :

Water vapor

\({\text{hw}}\) :

Heating water

\(i\) :

Inlet

\(L\) :

Loss

\(m\) :

Mass (kg)

\(o\) :

Outlet

\(r\) :

Refrigerant

\(s/{\text{sat}}\) :

Saturation

\({\text{sc}}\) :

Solar collector

\({\text{sr}}\) :

Sunrise

\({\text{ss}}\) :

Sunset

\(w\) :

Water

\({\text{con}}\) :

Condenser

\({\text{ch}}\) :

Chilled water

\({\text{cw}}\) :

Cooling water

\({\text{Al}}/{\text{Cu}}\) :

Al/Cu heat exchanger tubes

\({\text{ad}}\) :

Adsorbent

\({\text{ads}}/{\text{ADS}}\) :

Adsorption

\({\text{gen}}\) :

Generator

\({\text{sol}}\) :

Solution

\({\text{SHE}}/{\text{SHEX}}\) :

Solution heat exchanger

\({\text{abs}}\) :

Absorber

\({\text{ex}}\) :

Heat exchanger materials (Al + Cu)

\({d}_{{\text{g}},{\text{i}},{\text{sc}}}\) :

Inner diameter of outer glass tube

\({d}_{{\text{g}},{\text{o}},{\text{sc}}}\) :

Outer diameter of outer glass tube

\({d}_{{\text{a}},{\text{i}},{\text{sc}}}\) :

Inner diameter of absorber tube

\({d}_{{\text{a}},{\text{o}},{\text{sc}}}\) :

Outer diameter of absorber tube

\({d}_{{\text{h}},{\text{i}},{\text{sc}}}\) :

Inner diameter of copper heat pipe

\({d}_{{\text{h}},{\text{o}},{\text{sc}}}\) :

Outer diameter of copper heat pipe

\({d}_{{\text{co}},{\text{i}},{\text{sc}}}\) :

Inner diameter of condenser

\({t}_{{\text{g}},{\text{sc}}}\) :

Thickness of outer glass tube

\({t}_{{\text{h}},{\text{sc}}}\) :

Thickness of copper heat pipe

\({t}_{{\text{c}},{\text{sc}}}\) :

Thickness of insulator coating

\({\tau }_{{\text{g}},{\text{sc}}}\) :

Transmissivity of glass

\({\epsilon }_{{\text{g}},{\text{sc}}}\) :

Emissivity of glass

\({\epsilon }_{{\text{a}},{\text{sc}}}\) :

Emissivity of absorber coating

\({\alpha }_{{\text{a}},{\text{sc}}}\) :

Absorptivity of absorber tube

\({C}_{{\text{p}},{\text{g}},{\text{sc}}}\) :

Specific heat capacity of glass

\({\rho }_{{\text{g}},{\text{sc}}}\) :

Density of glass

\({L}_{{\text{e}},{\text{sc}}}\) :

Length of evaporator (heat pipe)

\({V}_{{\text{f}},{\text{sc}}}\) :

Filling ratio of heat transfer fluid (water)

\({{\text{Nu}}}_{{\text{w}},{\text{h}}}\) :

Nusselt number of water in heat pipe

\({{\text{Re}}}_{{\text{w}},{\text{h}}}\) :

Reynolds number of water in heat pipe

\({L}_{{\text{c}},{\text{sc}}}\) :

Length of condenser

\({K}_{{\text{w}}}\) :

Thermal conductivity of water

\({\mu }_{{\text{w}}}\) :

Dynamic viscosity of water

\({A}_{{\text{c}}}\) :

Collector surface area

\(\Omega \) :

Thermal capacitance (\({{{\text{J}\,\text{K}}}}^{-1}\))

\({N}_{{\text{t}},{\text{sc}}}\) :

Number of tubes

\({K}_{{\text{ins}},{\text{sc}}}\) :

Thermal conductivity of insulation

\({d}_{{\text{i}},{\text{ins}},{\text{sc}}}\) :

Inner diameter of insulation

\({d}_{{\text{o}},{\text{ins}},{\text{sc}}}\) :

Outer diameter of insulation

\({W}_{{\text{t}},{\text{sc}}}\) :

Inter-tube width

\(\sigma \) :

Stefan–Boltzmann’s constant

\({V}_{{\text{air}}}\) :

Velocity of air

\({\mu }_{{\text{air}}}\) :

Dynamic viscosity of air

\({K}_{{\text{air}}}\) :

Thermal conductivity of air

\({{\text{Nu}}}_{{\text{air}}}\) :

Nusselt number of air

\({{\text{Re}}}_{{\text{air}}}\) :

Reynolds number of air

\({\varepsilon }_{{\text{h}},{\text{sc}}}\) :

Heat transfer efficiency of heat pipe

\({\rho }_{{\text{w}},{\text{h}}}\) :

Density of water in the heat pipe

\({V}_{{\text{w}},{\text{h}}}\) :

Velocity of water in the heat pipe

\({{\text{Pr}}}_{{\text{w}},{\text{h}}}\) :

Prandtl no. water in the heat pipe

\({h}_{{\text{g}}-{\text{e}},{\text{rad}}}\) :

Radiation heat transfer coefficient between outer glass tube and atmosphere

\({h}_{{\text{g}}-{\text{e}},{\text{conv}}}\) :

Convection heat transfer coefficient between outer glass tube and atmosphere

\({h}_{{\text{g}}-{\text{a}},{\text{rad}}}\) :

Radiation heat transfer coefficient between outer and inner glass tubes

\({h}_{{\text{h}}-{\text{c}},{\text{conv}}}\) :

Convection heat transfer coefficient between heat pipe and condenser

\({h}_{{\text{w}}-{\text{h}},{\text{conv}}}\) :

Convection heat transfer coefficient between heat pipe and water

References

  1. Rawat, S.: Food spoilage microorganisms and their prevention. Pelagia research library Asian. J. Plant Sci. 5(4), 47–56 (2015)

    Google Scholar 

  2. Aulakh, J.; Regmi, A.; Fulton, J.; Alexander, C.: Estimating Post-Harvest Food Losses: Developing a Consistent Global Estimation Framework. Agricultural & Applied Economics Association’s AAEA & CAES Joint Annual Meeting, August 4–6, Washington, DC, U.S.A (2013).

  3. Hodges, R.; Buzby, J.C.; Bennett, B.: Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J. Agric. Sci. 149(S1), 37–45 (2011)

    Article  Google Scholar 

  4. Rattanakaran, J.; Saengrayap, R.; Prahsarn, C.; Kitazawa, H.; Chaiwong, S.: Application of room cooling and thermal insulation materials to maintain quality of okra during storage and transportation. Horticulturae 7(7), 188 (2021)

    Article  Google Scholar 

  5. Li, J.; Fu, Y.; Yan, J.; Song, H.; Jiang, W.: Forced air precooling enhanced storage quality by activating the antioxidant system of mango fruits. J. Food Qual. Article ID 1606058, 12 (2019).

  6. Duan, Y.; Wang, G.-B.; Fawole, O.A.; Verboven, P.; Zhang, X.-R.; Wu, D.; Opara, U.L.; Nicolai, B.; Chen, K.: Postharvest precooling of fruit and vegetables: a review. Trends Food Sci. Technol. 100, 278–291 (2020)

    Article  Google Scholar 

  7. De, J.; Bertoldi, B.; Jubair, M.; Gutierrez, A.; Brecht, J.K.; Sargent, S.A.; Schneider, K.R.: Evaluation and comparison of postharvest cooling methods on the microbial quality and storage of Florida peaches. HortTechnology 30(4), 504–509 (2020)

    Article  Google Scholar 

  8. Babaremu, K.O.; Adekanye, T.A.; Okokpujie, I.P.; Fayomi, J.; Atiba, O.E.: The significance of active evaporative cooling system in the shelf life enhancement of vegetables (red and green tomatoes) for minimizing post-harvest losses. Procedia Manuf. 35, 1256–1261 (2019)

    Article  Google Scholar 

  9. Santana, J.C.C.; Araújo, S.A.; Alves, W.A.L.; Belan, P.A.; Jiangang, L.; Jianchu, C.; Dong-Hong, L.: Optimization of vacuum cooling treatment of postharvest broccoli using response surface methodology combined with genetic algorithm technique. Comput. Electron. Agric. 100, 278–291 (2018)

    Google Scholar 

  10. Liu, Y.; Zhang, Z.; Hu, L.: High efficient freeze-drying technology in food industry. Crit. Rev. Food 62(12), 3370–3388 (2020)

    Article  Google Scholar 

  11. Valeria, P.; Efstratios, V.; Sotirios, K.; Andrea, F.: Hybrid adsorption-compression systems for air conditioning in efficient buildings: design through validated dynamic models. Energies 12(6), 1161–1188 (2019)

    Article  Google Scholar 

  12. Giuseppe, E.D.; Valeria, P.; Eliza, N.; Andrea, F.: Experimental characterization of an innovative hybrid thermal-electric chiller for industrial cooling and refrigeration application. Appl. Energy 281, 116098–116112 (2021)

    Article  Google Scholar 

  13. Mohamed, G.G.; Tamer, F.M.; Shinichi, O.; Sameh, N.; Ibrahim, I.E.-S.: Performance and economic analysis of solar-powered adsorption-based hybrid cooling systems. Energy Convers. Manag. 238, 114134–114148 (2021)

    Article  Google Scholar 

  14. Mohamed, G.G.; Tamer, F.M.; Shinichi, O.; Sameh, N.; Ibrahim, I.E.-S.: Potential application of cascade adsorption-vapor compression refrigeration system powered by photovoltaic/thermal collectors. Appl. Therm. Eng. 207, 118075–118091 (2022)

    Article  Google Scholar 

  15. Mohamed, G.G.; Shinichi, O.; Sameh, N.; Ibrahim, I.E.-S.: Hybrid sorption-vapor compression cooling systems: a comprehensive overview. Renew. Sustain. Energy Rev. 143, 110912–110939 (2021)

    Article  Google Scholar 

  16. Harby, K.; Almohammadi, M.: Study of a new solar-powered combined absorption-adsorption cooling system (ABADS). Arab. J. Sci. Eng. 46, 2929–2945 (2021)

    Article  Google Scholar 

  17. Nikbakhti, R.; Iranmanesh, A.: Potential application of a novel integrated adsorption–absorption refrigeration system powered with solar energy in Australia. Appl. Therm. Eng. 194, 117114–117132 (2021)

    Article  Google Scholar 

  18. Nikbakhti, R.; Wang, X.; Chan, A.: Performance optimization of an integrated adsorption-absorption cooling system driven by low-grade thermal energy. Appl. Therm. Eng. 193, 117035–117048 (2021)

    Article  Google Scholar 

  19. Hassan, M.; El-Sharkawy, I.I.; Amin, M.T.; Harby, K.: Numerical simulation of cascaded absorption-two-stage 4-bed adsorption cooling cycles for efficient low-grade heat utilization. Appl. Therm. Eng. 235, 121396–121410 (2023)

    Article  Google Scholar 

  20. Hassan, M.; El-Sharkawy, I.I.; Harby, K.: Study of an innovative combined absorption-adsorption cooling system employing the same evaporator and condenser. Case Stud. Therm. Eng. 42, 102690–102704 (2023)

    Article  Google Scholar 

  21. Mohammed, R.H.; Radwan, A.; Rezk, A.; Olabi, A.G.; Sharma, V.; Hossain, A.K.; Alaswad, A.; Abdelkareem, M.A.: Energy and exergy study of the integrated adsorption-absorption system driven by transient heat sources for cooling and desalination. Energy Convers. Manag. 277, 116614–116629 (2023)

    Article  Google Scholar 

  22. Nikbakhti, R.; Wang, X.; Chan, A.: Performance analysis of an integrated adsorption and absorption refrigeration system. Int. J. Refrig. 117, 269–283 (2020)

    Article  Google Scholar 

  23. Xia, Z.Z.; Chen, C.J.; Kiplagat, J.K.; Wang, R.Z.; Hu, J.Q.: Adsorption equilibrium of water on silica gel. J. Chem. Eng. Data 53, 2462–2465 (2008)

    Article  Google Scholar 

  24. Waszkiewicz, S.D.; Tierney, M.J.; Saidani-Scott, H.: Development of coated, annular fins for adsorption chillers. Appl. Therm. Eng. 29, 2222–2227 (2009)

    Article  Google Scholar 

  25. Han, B.; Chakraborty, A.: Adsorption characteristics of methyl-functional ligand MOF-801 and water systems: adsorption chiller modelling and performances. Appl. Therm. Eng. 175, 115393 (2020)

    Article  Google Scholar 

  26. Rezk, A.R.M.; Al-Dadah, R.K.: Physical and operating conditions effects on silica gel/water adsorption chiller performance. Appl. Energy 89, 142–149 (2012)

    Article  Google Scholar 

  27. Jaiswal, A.K.; Mitra, S.; Dutta, P.; Srinivasan, K.; Murthy, S.S.: Influence of cycle time and collector area on solar driven adsorption chillers. Sol. Energy 136, 450–459 (2016)

    Article  Google Scholar 

  28. G/Hawariat, A.: Integration of Solar Thermal System for Improved Energy Consumption in Low. Temperature Industrial Processes, Case: Harar Brewery. M.S. Thesis, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia (2016).

  29. Qadir, N.U.; Xu, Z.Y.; Pan, Q.W.; Said, S.A.M.; Mansour, R.B.; Akhtar, K.: Performance prediction of a two-bed solar-powered adsorption chiller with heat and mass recovery cycles and adaptive cycle time—a first step towards the design of fully autonomous commercial-scale adsorption chillers. Appl. Therm. Eng. 192, 116950–116973 (2021)

    Article  Google Scholar 

  30. Rezk, A.R.M.: Theoretical and experimental investigation of silica gel/water adsorption refrigeration systems. PhD Thesis, University of Birmingham, U.K. (2012).

  31. Kabir, K.M.A.; Rouf, R.A.; Sarker, M.M.A.; Alam, K.C.A.; Saha, B.B.: Improvement of COP with heat recovery scheme for solar adsorption cooling system. Int. J. Air-Cond. Refrig. 26(2), 1850016 (2018)

    Article  Google Scholar 

  32. Wang, D.C.; Xia, Z.Z.; Wu, J.Y.; Wang, R.Z.; Zhai, H.; Dou, W.D.: Study of a novel silica gel–water adsorption chiller. Part I. Design and performance prediction. Int. J. Refrig. 28, 1073–1083 (2005)

    Article  Google Scholar 

  33. Bakirci, K.: Correlations for estimation of solar radiation on horizontal surfaces. J. Energy Eng. 134(4), 130–134 (2008)

    Article  Google Scholar 

  34. Corrada, P.; Bell, J.; Guan, L.; Motta, N.: Optimizing solar collector tilt angle to improve energy harvesting in a solar cooling system. Energy Procedia 48, 806–812 (2014)

    Article  Google Scholar 

  35. Haitang, W.; Aiguo, W.; Zhenchang, L.; Yujia, S.A.: State-space model for dynamic simulation of a single-effect LiBr/H2O absorption Chiller. IEEE 7, 57251–57258 (2019)

    Google Scholar 

  36. Ochoa, A.A.V.; Dutra, J.C.C.; Henríquez, J.R.G.; dos Santos, C.A.C.: Dynamic study of a single effect absorption chiller using the pair LiBr/H2O. Energy Convers. Manag. 108, 30–42 (2016)

    Article  Google Scholar 

  37. Brian, H.-S.: A new formula for latent heat of vaporization of water as a function of temperature. Q. J. R. Meteorol. Soc. 110(466), 1186–1190 (2006)

    Google Scholar 

  38. Aldarabseh, S.M.: Evaporation Rate from Free Water Surface. PhD thesis. Western Michigan University (2020).

  39. Lan, Z.; Ma, X.; Hao, Z.; Jiang, R.: Experiments on saturated vapor pressure of aqueous lithium bromide solution at high temperatures. Int. J. Refrig. 76, 73–83 (2017)

    Article  Google Scholar 

  40. Cevallos, O.R.F.: Adsorption Characteristics of Water and Silica Gel System for Desalination Cycle. MS thesis, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (2012).

  41. Tso, C.Y.; Fu, S.C.; Chao, C.Y.H.: Modeling a solar-powered double bed novel composite adsorbent (silica activated carbon/CaCl2)–water adsorption chiller. Build. Simul. 7, 185–196 (2014)

    Article  Google Scholar 

  42. Mohamed, S.A.; Karimi, M.N.: Simulation of lithium bromide- water (LiBr-H2O) vapor absorption system (VAS) powered by solar flat plate collector (SFPC). IOP Conf. Ser. Mater. Sci. Eng. 691, 012031 (2019)

    Article  Google Scholar 

  43. Butcher, J.C.: Numerical methods for ordinary differential equations in the 20th century. J. Comput. Appl. Math. 125(1–2), 1–29 (2000)

    Article  MathSciNet  Google Scholar 

  44. Mehrabian, M.A.; Mansouri, S.H.; Sheikhzadeh, G.A.: The overall heat transfer characteristics of a double pipe heat exchanger: comparison of experimental data with predictions of standard correlations. IJE Trans. B Appl. 15(4), 395–406 (2002)

    Google Scholar 

  45. Yuan, Z.; Herold, K.E.: Specific heat measurements on aqueous lithium bromide. HVAC&R Res. 11(3), 361–375 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly indebted to the computational support extended by the School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan, and the Department of Refrigeration and Cryogenics of Beijing University of Technology, Beijing, China, as well as the theoretical support offered by the Mechanical Engineering Department of King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najam ul Qadir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendices

Appendix 1

The expression for \({U}_{\text{SHE}}{\left({T}_{\text{weak}}^{\text{SHE}},{T}_\text{strong}^\text{SHE},{X}_{\text{weak}},{X}_\text{strong}\right)A}_{\text{SHE}}\) is given below [44]:

The solution heat exchanger is assumed to be a concentric double pipe countercurrent heat exchanger in which the strong solution is flowing within the inner pipe, while the weak solution is flowing within the annulus between the two pipes in the opposite direction to the strong solution. \({U}_{\text{SHE}}{A}_{\text{SHE}}\) can be expressed as:

\({U}_{\text{SHE}}{A}_{\text{SHE}}=\left(\frac{1}{\frac{{D}_{oi}}{{D}_{ii}}\frac{1}{{h}_{i}}+\frac{1}{{h}_{o}}}\right)\left(\pi \frac{{D}_{oi}^{2}}{4}\right), {\text{where}}\)where \({D}_{{\text{ii}}}\) is the inner diameter of the inner pipe (\(0.875\) inches), while \({D}_{{\text{oi}}}\) is the inner diameter of the outer pipe (\(1.5\) inches), and \({h}_{{\text{i}}}\) and \({h}_{{\text{o}}}\) are the heat transfer coefficients of the strong and weak solutions, respectively, and can be expressed as:

$${h}_{{\text{i}}}=\frac{0.023{Re}_\text{strong}^{0.8}{Pr}_\text{strong}^{1/3}{K}_{\text{sol}}^\text{strong}\left({T}_\text{strong}^\text{SHE},{X}_\text{strong}\right)}{{D}_{{\text{ii}}}}$$
$${h}_{{\text{o}}}=\frac{0.023{Re}_{\text{weak}}^{0.8}{Pr}_{\text{weak}}^{1/3}{K}_{\text{sol}}^{\text{weak}}\left({T}_{\text{weak}}^{\text{SHE}},{X}_{\text{weak}}\right)}{{D}_{{\text{oi}}}}$$

where the thermal conductivity of the LiBr/water solution can be expressed as:

$${K}_{\text{sol}}\left(T,X\right)=-\left(6.32\times {10}^{-9}\right)X{T}^{3}+\left(7.32\times {10}^{-9}\right){T}^{3}+\left(1.39\times {10}^{-5}\right)X{T}^{2}-\left(1.55\times {10}^{-5}\right){T}^{2}-\left(7.67\times {10}^{-3}\right)XT+\left(8.99\times {10}^{-3}\right)T+\left(8.84\times {10}^{-1}\right)X-0.88$$
$${{\text{Re}}}_{\text{weak}}\left({T}_{\text{weak}}^{\text{SHE}},{X}_{\text{weak}}\right)=\frac{4{D}_{E}{\dot{m}}_{\text{weak}}}{\pi {\mu }_{\text{sol}}\left({T}_{\text{weak}}^{\text{SHE}},{X}_{\text{weak}}\right)\left[{D}_{{\text{oi}}}^{2}-{\left({D}_{{\text{ii}}}+2{t}_{i}\right)}^{2}\right]}$$
$${{\text{Re}}}_\text{strong}\left({T}_\text{strong}^{\text{SHE}},{X}_\text{strong}\right)=\frac{4{\dot{m}}_\text{strong}}{\pi {D}_{{\text{ii}}}{\mu }_{\text{sol}}\left({T}_\text{strong}^{\text{SHE}},{X}_\text{strong}\right)}$$

where \({D}_{E}\) is the equivalent diameter (0.74 inches), \({t}_{i}\) is the thickness of inner pipe (0.0315 inches), and the viscosity of solution can be expressed as:

$${\mu }_{\text{sol}}\left(T,X\right)={10}^{-3}{e}^{\left(-35212\frac{{X}^{2}}{{T}^{2}}+\frac{372995}{{T}^{2}}+963.16\frac{{X}^{2}}{T}-\frac{609.5}{T}+3.19{X}^{2}-2.32\right)}$$
$${Pr}_{\text{sol}}\left(T,X\right)=\frac{{C}_{p}^{\text{sol}}\left(T,X\right){\mu }_{\text{sol}}\left(T,X\right)}{{K}_{\text{sol}}\left(T,X\right)}$$

where the specific heat capacity of solution can be expressed as [45]:

\( \begin{aligned} & C_{p}^{{{\text{sol}}}} \left( {T,\mathop X\limits^{} } \right) = - \left( {2 \times 10^{3} } \right)\\ &\quad T\left( {C_{0} + C_{1} \mathop X\limits^{} + C_{2} \mathop X\limits^{} {}^{2} + C_{3} \mathop X\limits^{} {}^{3} + C_{4} \mathop X\limits^{} {}^{{1.1}} } \right) \\ & - \left( {6 \times 10^{3} } \right)T^{2} \left( {D_{0} + D_{1} \mathop X\limits^{} + D_{2} \mathop X\limits^{} {}^{2} + D_{4} \mathop X\limits^{} {}^{{1.1}} } \right) \\ &\quad - \left( {12 \times 10^{3} } \right)T^{3} \left( {E_{0} + E_{1} \mathop X\limits^{} } \right) \\ & - \left( {2 \times 10^{3} } \right)\frac{{\left( {F_{0} + F_{1} \mathop X\limits^{} } \right)T}}{{\left( {T - T_{0} } \right)^{3} }} \\ &\quad + \frac{{10^{3} }}{T}\left( {L_{0} + L_{1} \mathop X\limits^{} + L_{2} \mathop X\limits^{} {}^{2} + L_{3} \mathop X\limits^{} {}^{3} + L_{4} \mathop X\limits^{} {}^{{1.1}} } \right) \\ & - 10^{3} \left( {M_{0} + M_{1} \mathop X\limits^{} + M_{2} \mathop X\limits^{} {}^{2} + M_{3} \mathop X\limits^{} {}^{3} + M_{4} \mathop X\limits^{} {}^{{1.1}} } \right) \\ \end{aligned} \), where \(\acute{X}= 100X\) and the values of the various coefficients are listed in the following table.

Variable

Coefficient Value

    

\({C}_{i}, i=0,..,4\)

\(2.65\times {10}^{-2}\)

\(-2.31\times {10}^{-3}\)

\(7.56\times {10}^{-6}\)

\(-3.76\times {10}^{-8}\)

\(1.18\times {10}^{-3}\)

\({D}_{i}, i=0,..,\mathrm{2,4}\)

\(-8.53\times {10}^{-6}\)

\(1.32\times {10}^{-6}\)

\(2.79\times {10}^{-11}\)

\(-\)

\(-8.51\times {10}^{-7}\)

\({E}_{i}, i=0,..,1\)

\(-3.84\times {10}^{-11}\)

\(2.63\times {10}^{-11}\)

\(-\)

\(-\)

\(-\)

\({F}_{i}, i=0,..,1\)

\(-5.16\times {10}^{1}\)

\(1.1146\)

\(-\)

\(-\)

\(-\)

\({L}_{i}, i=0,..,4\)

\(-2.18\times {10}^{3}\)

\(-1.27\times {10}^{2}\)

\(-2.3646\)

\(1.39\times {10}^{-2}\)

\(1.58\times {10}^{2}\)

\({M}_{i}, i=0,..,4\)

\(-2.27\times {10}^{1}\)

\(2.98\times {10}^{-1}\)

\(-1.26\times {10}^{-2}\)

\(6.85\times {10}^{-5}\)

\(2.77\times {10}^{-1}\)

Appendix 2

The expressions for \({U}_{\text{abs}}{\left({T}_{\text{abs}}\right)A}_{\text{abs}}\) and \({U}_{\text{gen}}{\left({T}_{\text{gen}}\right)A}_{\text{gen}}\) are exactly the same as those reported for \({U}_{\text{evap}}{\left({T}_{\text{evap}}\right)A}_{\text{evap}}\) and \({U}_\text{con}{\left({T}_\text{con}\right)A}_\text{con},\) respectively, in an earlier publication along with the following replacements: \({T}_{\text{evap}}={T}_{\text{gen}}\), \({T}_\text{cond}={T}_{\text{abs}}\), \({T}_{ch,i}^{\text{evap}}={T}_\text{hw,i}^{\text{gen}}\), \({T}_{ch,o}^{\text{evap}}={T}_\text{hw,o}^{\text{gen}}\), \({T}_\text{cw,i}^\text{con}={T}_\text{cw,i}^{\text{abs}}\), \({T}_\text{cw,o}^\text{con}={T}_\text{cw,o}^{\text{abs}}\), \({{\dot{m}}_{ch}^{\text{evap}}=\dot{m}}_\text{hw}^{\text{gen}}\), \({{\dot{m}}_\text{cw}^\text{con}=\dot{m}}_\text{cw}^{\text{abs}}\) [29].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadir, N., Bahaidarah, H., Zhipeng, Q. et al. A Parallel-Effect Combination of Absorption and Adsorption Cooling as a First Step Toward Uninterrupted Hybrid Sorption Refrigeration. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09025-2

Keywords

Navigation