Skip to main content

Advertisement

Log in

Hybrid Thermally Driven Sorption–Ejector Systems: A Comprehensive Overview

  • Review Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The rapid increase in population and demand for human comfort causes a substantial increase in energy usage. Sorption technology and ejectors are the most concerned heat-driven system nowadays due to their low energy consumption, ability to be powered by a low-grade heat source, and environmental friendliness. However, it has low energy efficiency and a high initial cost compared with vapor compression cycles. Combining sorption–ejector systems can increase the overall thermal performance, provide the benefits of each cycle, and overcome the limitations of a single cycle. This study provides a comprehensive overview of the art of combining sorption, including absorption and adsorption, with ejector systems. The paper primarily focuses on the theory of operation and the background of absorption, adsorption, and ejector systems. Research and achievements on combined absorption–ejector systems are classified into combined single-ejector, multi-ejector, and other systems with absorption cooling systems. On the other hand, studies on adsorption–ejector systems are classified into combined adsorption cooling, adsorption desalination, and other systems with ejectors. A summary of the reviewed studies and the utilized working fluid is provided and discussed. Results showed that numerous experimental studies still need to be conducted to validate the theoretical data. At different design and operating conditions and system design, by using combined sorption–ejector systems, the power consumption can be decreased by 9.8%, cooling capacity reduced by 13.6%, and the coefficient of performance can be enhanced by 8–60% compared with the standalone sorption system. The overall COP of combined adsorption–ejector systems increased by 0.33 and 1.47 compared with the standalone ABCS, which is lower than that obtained from EJABS. The SDWP is enhanced by 51% compared with the standalone ADCS. The combined adsorption–ejector systems are compatible with several working fluids; however, LiBr-H2O solution predominates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Harby, K.: Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renew. Sustain. Energy Rev. 73, 1247–1264 (2017)

    Google Scholar 

  2. Harby, K.; Almohammadi M, K.: Study of a new solar-powered combined absorption-adsorption cooling system (ABADS). Arab. J. Sci. Eng. 46, 2929–2945 (2021)

    Google Scholar 

  3. Harby, K.; Doaa, R.G.; Nader, S.K.; Mohamed, S.H.: Performance improvement of vapor compression cooling systems using evaporative condenser: an overview. Renew. Sustain. Energy Rev. 58, 347–360 (2016)

    Google Scholar 

  4. Verde, M.; Harby, K.; Robert de Boer, J.M.; Corberán: Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I- Modeling and experimental validation. Energy 116, 526–538 (2016)

    Google Scholar 

  5. Harby, K.; Fahad, A.: An investigation of energy savings in a split air-conditioner using commercial cooling pads with different thicknesses and wide range of climatic conditions. Energy 182, 321–336 (2019)

    Google Scholar 

  6. Hamdy, M.; Askalany, A.; Harby, K.; Nader, K.: An overview on adsorption cooling systems powered by waste heat from internal combustion engine. Renew. Sustain. Energy Rev. 51, 1223–1234 (2015)

    Google Scholar 

  7. Ehab, S.A.; Ahmed, A.A.; Harby, K.; Mohamed, R.D.; Ahmed, S.A.: Adsorption desalination-cooling system employing copper sulfate and driven by low grade heat sources. Appl. Therm. Eng. 136, 169–176 (2018)

    Google Scholar 

  8. Hassan, M.; El-Sharkawy, I.I.; Harby, K.: Study of an innovative combined absorption-adsorption cooling system employing the same evaporator and condenser. Case Stud. Therm. Eng. 42, 102690 (2022)

    Google Scholar 

  9. Ahmed, S.A.; Askalany, A.; Harby, K.; Ahmed, M.S.: A state of the art of hybrid adsorption desalination-cooling systems. Renew. Sustain. Energy Rev. 58, 692–703 (2016)

    Google Scholar 

  10. Hirota, Y.; Sugiyama, Y.; Kubota, M.; Watanabe, F.; Kobayashi, N.; Hasatani, M.; Kanamori, M.: Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump. Appl. Therm. Eng. 28, 1687–1693 (2008)

    Google Scholar 

  11. Verde, M.; Harby, K.; Corberán, J.M.: Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning. Appl. Therm. Eng. 111, 489–502 (2017)

    Google Scholar 

  12. AfonsoClito, F.A.: Refrigeration system classification, research and development. Appl. Therm. Eng. 26, 1961–1971 (2006)

    Google Scholar 

  13. Allouhi, A.; Kousksou, T.; Jamil, A.; Bruel, P.; Mourad, Y.; Zeraouli, Y.: Solar driven cooling systems: an updated review. Renew. Sustain. Energy Rev. 44, 159–181 (2015)

    Google Scholar 

  14. Aristov, Y.I.: Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)

    Google Scholar 

  15. Hamza, K.M.; Saud, G.: Hybrid ejector-absorption refrigeration systems: a review. Energies 14, 6576 (2021)

    Google Scholar 

  16. Varga, S.; Oliveira, A.C.; Palmero-Marrero, A.; Vrba, J.: Preliminary experimental results with a solar driven ejector air conditioner in Portugal. Renew. Energy 109, 83–92 (2017)

    Google Scholar 

  17. Bilal, A.Q.; Muhammad, I.; Mohamed, A.A.: Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling. Appl. Energy 102, 1035–1041 (2013)

    Google Scholar 

  18. Ehab, S.A.; Ahmed, A.A.; Harby, K.; Mohamed, R.D.; Bahgat, R.M.; Ahmed, A.: Experimental adsorption water desalination system utilizing activated clay for low grade heat source applications. J. Energy Storage 43, 103219 (2021)

    Google Scholar 

  19. Konstantinos, B.: Solar ejector cooling systems: a review. Renew. Energy 164, 566–602 (2021)

    Google Scholar 

  20. Herold, K.E.; Radermacher, R.: Absorption heat pumps. Mech. Eng. 111, 68–71 (1989)

    Google Scholar 

  21. Elsafty, A.; AL-DAINI, A.J.: Economical comparison between a solar powered vapour absorption air-conditioning system and a vapour compression system in the Middle East. Renew. Energy 25, 569–583 (2002)

    Google Scholar 

  22. Abdulrahman, T.M.; Sohif, M.; Sulaiman, M.Y.; Sopian, K.; Abduljalil, A.A.: Survey of liquid desiccant dehumidification system based on integrated vapor compression technology for building applications. Energy and Build. 62, 1–14 (2013)

    Google Scholar 

  23. Abdulrahman, T.M.; Sohif, M.; Sulaiman, M.Y.; Sopian, K.; Abduljalil, A.A.: Historical review of liquid desiccant evaporation cooling technology. Energy and Build. 67, 22–33 (2013)

    Google Scholar 

  24. Jahar, S.: Ejector enhanced vapor compression refrigeration and heat pump systems-A review. Renew. Sustain. Energy Rev. 16, 6647–6659 (2012)

    Google Scholar 

  25. Garousi, F.L.; Mahmoudi, S.M.; Rosen, M.A.: Analysis of crystallization risk in double effect absorption refrigeration systems. Appl. Therm. Eng. 31, 1712–1717 (2011)

    Google Scholar 

  26. Wang, L.W.; Wang, R.Z.; Olivera, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009)

    Google Scholar 

  27. Fan, Y.; Luo, L.; Souyri, B.: Review of solar sorption refrigeration technologies: development and applications. Renew. Sustain. Energy Rev. 11, 1758–1775 (2007)

    Google Scholar 

  28. Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S.: A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 5, 343–372 (2001)

    Google Scholar 

  29. Horuz, I.: A comparison between ammonia-water and water-lithium bromide solutions in vapor absorption refrigeration systems. Int. Commun. Heat Mass Trans. 25, 711–721 (1998)

    Google Scholar 

  30. Mansoori, G.A.; Patel, V.: Thermodynamic basis for the choice of working fluids for solar absorption cooling systems. Sol. Energy 22, 483–491 (1979)

    Google Scholar 

  31. Herold K.E., Radermacher R. and Klein S.: Absorption Chillers and Heat Pumps, CRC Press, INC, ISBN 9: 8493–9427. (1996)

  32. Fern, A.J.; Sieres, J.: The importance of the ammonia purification process in ammonia-water absorption systems. Energy Convers. Manage. 47, 1975–1987 (2006)

    Google Scholar 

  33. Hulse, G.E.: Refroidissement d’un wagon frigorifique a merchandises par un system a adsorption utilisant le gel de silice. Revue Generale de Froid 10, 281–287 (1929)

    Google Scholar 

  34. Miller, E.B.: The development of silica-gel, refrigerating engineering. Am. Soc. Refrigerating Eng. 17, 103–108 (1929)

    Google Scholar 

  35. Critoph R.E., Carbon-ammonia systems-previous experience, current projects and challenges for the future. Proceedings of the international sorption and heat pump conference (ISHPC 2002), China.

  36. Harby, K.; Ehab, S.A.; Almohammadi, K.M.: A novel combined reverse osmosis and hybrid absorption desalination-cooling system to increase overall water recovery and energy efficiency. J. Clean. Prod. 287, 125014 (2021)

    Google Scholar 

  37. Almohammadi, K.M.; Harby, K.: Operational conditions optimization of a proposed solar-powered adsorption cooling system: experimental, modeling, and optimization algorithm techniques. Energy 206, 118007 (2020)

    Google Scholar 

  38. Aristov, Y.I.: Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50, 1610–1618 (2013)

    Google Scholar 

  39. El-sharkawy, M.M.; Askalany, A.; Harby, K.; Ahmed, M.S.: Adsorption isotherms and kinetics of a mixture of Pentafluoroethane, 1,1,1,2-Tetrafluoroethane and Difluoromethane (HFC-407C) onto granular activated carbon. Appl. Therm. Eng. 93, 988–994 (2016)

    Google Scholar 

  40. Mohamed, G.; Askalany, A.; Harby, K.; Ahmed, M.S.: Adsorption isotherms and kinetics of HFC-404A onto bituminous based granular activated carbon for storage and cooling applications. Appl. Therm. Eng. 105, 639–645 (2016)

    Google Scholar 

  41. Lu, Z.; Wang, R.; Xia, Z.; Gong, L.: Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol. Energy Convers. Manage. 65, 430–437 (2013)

    Google Scholar 

  42. Yeboah, S.K.; Darkwa, J.: A critical review of thermal enhancement of packed beds for water vapour adsorption. Renew. Sustain. Energy Rev. 58, 1500–1520 (2016)

    Google Scholar 

  43. Hong, S.W.; Kwon, O.K.; Chung, J.D.: Application of an embossed plate heat exchanger to adsorption chiller. Int. J. Refrig 65, 142–153 (2016)

    Google Scholar 

  44. Palomba, V.; Vasta, S.; Giacoppo, G.; Calabrese, L.; Gullì, G.; La Rosa, D.; Angelo, F.: Design of an innovative graphite exchanger for adsorption heat pumps and chillers. Energy Procedia 81, 1030–1040 (2015)

    Google Scholar 

  45. Hadj, A.A.; Benhaoua, B.; Balghouthi, M.: Simulation of tubular adsorber for adsorption refrigeration system powered by solar energy in sub-Sahara region of Algeria. Energy Convers. Manage. 106, 31–40 (2015)

    Google Scholar 

  46. Vasta S., Palomba V., Frazzica A., Costa F., Freni A., Dynamic simulation and performance analysis of solar cooling systems in Italy. Energy Procedia 2015;81.

  47. Freni, F.; Giacobbe, F.; Missori, S.; Montanini, R.; Sili, A.: Infrared thermography as a non destructive technique for the detection of titanium casting defects. Metall Italiana 103, 23–29 (2011)

    Google Scholar 

  48. Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E.: Novel compact sorption generators for car air conditioning. Int. J. Refrig 32, 727–733 (2009)

    Google Scholar 

  49. Chauhan, P.R.; Kaushik, S.C.; Tyagi, S.K.: Current status and technological advancements in adsorption refrigeration systems: A review. Renew. Sustain. Energy Rev. 154, 111808 (2022)

    Google Scholar 

  50. Kneass, S.L., Practice and Theory of the Injector; Kessinger Publications: Whitefish, MT, USA, 2007; ISBN 978–0–548–47587–4.

  51. Giorgio, B.; Riccardo, M.; Fabio, I.: Ejector refrigeration: A comprehensive review. Renew. Sustain. Energy Rev. 53, 373–407 (2016)

    Google Scholar 

  52. Chen, X.; Omer, S.; Worall, M.; Riffat, S.: Recent developments in ejector refrigeration technologies. Renew. Sustain. Energy Rev. 19, 629–651 (2013)

    Google Scholar 

  53. Al-Alili, A.; Hwang, Y.; Radermacher, R.: Review of solar thermal air conditioning technologies. Int. J. Refrig 39, 4–22 (2014)

    Google Scholar 

  54. Abdulateef, J.M.; Sopian, K.; Alghoul, M.A.; Sulaiman, M.Y.: Review on solar-driven ejector refrigeration technologies. Renew. Sustain. Energy Rev. 13, 1338–1349 (2009)

    Google Scholar 

  55. Sarkar, J.: Ejector enhanced vapor compression refrigeration and heat pump systems-a review. Renew. Sustain. Energy Rev. 16, 6647–6659 (2012)

    Google Scholar 

  56. Little, A.B.; Garimella, S.: A review of ejector technology for refrigeration applications. Int. J. Refrig 19, 1–15 (2011)

    Google Scholar 

  57. Chunnanond., Kanjanapon S.A., Ejectors applications in refrigeration technology. Renewable and sustainable energy reviews. 2004;8:129–155.

  58. Chen, L.T.: A new ejector-absorber cycle to improve the COP of an absorption Refrigeration system. Appl. Energy 30, 37–51 (1988)

    Google Scholar 

  59. Jiang, L.; Gu, Z.; Feng, X.; Li, Y.: Thermo-economical analysis between new absorption-ejector hybrid refrigeration system and small double-effect absorption system. Appl. Therm. Eng. 22, 1027–1036 (2002)

    Google Scholar 

  60. Sun, D.W.; Eames, I.W.; Aphornratana, S.: Evaluation of a novel combined ejector-absorption refrigeration cycle-I: computer simulation. Int. J. Refrig 19, 172–180 (1996)

    Google Scholar 

  61. Hong, D.; Chen, G.; Tang, L.; He, Y.: A novel ejector-absorption combined refrigeration cycle. Int. J. Refrig 34, 1596–1603 (2011)

    Google Scholar 

  62. Jelinek, M.; Borde, I.: Single-and double-stage absorption cycles based on fluorocarbon refrigerants and organic absorbents. Appl. Therm. Eng. 18, 765–71 (1998)

    Google Scholar 

  63. Eames, I.W.; Wu, S.: Experimental proof of concept testing of an innovative heat powered vapour recompression absorption refrigerator cycle. Appl. Therm. Eng. 20, 721–736 (2000)

    Google Scholar 

  64. Wu, S.; Eames, I.W.: A novel absorption-recompression refrigeration cycle. Appl. Therm. Eng. 18, 1149–1157 (1998)

    Google Scholar 

  65. Sözen, A.; Kurt, M.; Akçayol, M.A.; Özalp, M.: Performance prediction of a solar driven ejector-absorption cycle using fuzzy logic. Renew. Energy 29, 53–71 (2004)

    Google Scholar 

  66. Sözen, A.; Arcaklioğlu, E.: Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. Appl. Therm. Eng. 27, 481–491 (2007)

    Google Scholar 

  67. Jelinek, M.; Levy, A.; Borde, I.: Performance of a triple-pressure-level absorption cycle with R125-N, N′-dimethylethylurea. Appl. Energy 71, 171–189 (2002)

    Google Scholar 

  68. Garousi, F.L.; Mosaffa, A.H.; Infante, F.C.; Rosen, M.A.: Thermodynamic analysis and comparison of combined ejector-absorption and single effect absorption refrigeration systems. Appl. Energy 133, 335–346 (2014)

    Google Scholar 

  69. Reddy P.P., Murthy S.S.: Studies on an ejector-absorption refrigeration cycle with new working fluid pairs. World Climate and Energy Event, 15–17. (2005)

  70. Vereda, C.; Ventas, R.; Lecuona, A.; Venegas, M.: Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions. Appl. Energy 97, 305–312 (2012)

    Google Scholar 

  71. Vereda, C.; Ventas, R.; Lecuona, A.; López, R.: Single-effect absorption refrigeration cycle boosted with an ejector-adiabatic absorber using a single solution pump. Int. J. Refrig 38, 22–29 (2014)

    Google Scholar 

  72. Sirwan, R.; Alghoul, M.A.; Sopian, K.; Ali, Y.; Abdulateef, J.: Evaluation of adding flash tank to solar combined ejector–absorption refrigeration system. Sol. Energy 91, 283–296 (2013)

    Google Scholar 

  73. Abed, A.M.; Alghoul, M.A.; Al-Shamani, A.N.; Sopian, K.: Evaluating ejector efficiency working under intermediate pressure of flash tank–absorption cooling cycle: parametric study. Chem. Eng. Process. 95, 222–234 (2015)

    Google Scholar 

  74. Majdi, H.S.: Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle. Case Stud. Therm. Eng. 7, 25–35 (2016)

    Google Scholar 

  75. Abed, A.M.; Alghoul, M.A.; Sirawn, R.; Al-Shamani, A.N.; Sopian, K.: Performance enhancement of ejector-absorption cooling cycle by rearrangement of solution streamlines and adding RHE. Appl. Therm. Eng. 77, 65–75 (2015)

    Google Scholar 

  76. Sözen, A.; Özalp, M.: Solar-driven ejector-absorption cooling system. Appl. Energy 80, 97–113 (2005)

    Google Scholar 

  77. Abed, A.M.; Alghoul, M.A.; Sopian, K.: Performance evaluation of flash tank absorption cooling cycle using two ejectors. Appl. Therm. Eng. 101, 47–60 (2016)

    Google Scholar 

  78. Liang, X.; Zhou, S.; Deng, J.; He, G.; Cai, D.: Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps. Energy 185, 895–909 (2019)

    Google Scholar 

  79. Yazi, W.; Tian, C.; Yingbo, L.; Huaibo, S.Y.: A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: energy, exergy and exergoeconomic analysis. Energy Convers. Manage. 204, 112321 (2020)

    Google Scholar 

  80. Rashidi, J.; Yoo, C.K.: A novel Kalina power-cooling cycle with an ejector absorption refrigeration cycle: thermodynamic modelling and pinch analysis. Energy Convers. Manage. 162, 225–238 (2018)

    Google Scholar 

  81. Khaliq, A.; Kumar, R.; Mokheimer, E.M.: Investigation on a solar thermal power and ejector-absorption refrigeration system based on first and second law analyses. Energy 164, 1030–1043 (2018)

    Google Scholar 

  82. Hadi, R.; Hadi, G.; Shahram, V.; Javad, J.: Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles. Energy 139, 262–276 (2017)

    Google Scholar 

  83. Wang, J.; Dai, Y.; Zhang, T.; Ma, S.: Parametric analysis for a new combined power and ejector-absorption refrigeration cycle. Energy 34, 1587–1593 (2009)

    Google Scholar 

  84. Alami, A.; Makhlouf, M.; Lousdad, A.; Khalfi, A.; Benzaama, M.H.: Energetic and exergetic analyses of adsorption heat transformer ameliorated by ejector. J. Braz. Soc. Mech. Sci. Eng. 38, 2077–2084 (2016)

    Google Scholar 

  85. Zhang, X.J.; Wang, R.Z.: A new combined adsorption-ejector refrigeration and heating hybrid system powered by solar energy. Appl. Therm. Eng. 22, 1245–1258 (2002)

    Google Scholar 

  86. Desevaux, P.; Prenel, J.P.; Hostache, G.: Flow visualization methods for investigation an induced flow ejector. Journal of Flow Visualization and Image Processing 2, 61–74 (1995)

    Google Scholar 

  87. Li, C.H.; Wang, R.Z.; Lu, Y.Z.: Investigation of a novel combined cycle of solar powered adsorption–ejection refrigeration system. Renew. Energy 26, 611–622 (2002)

    Google Scholar 

  88. Gautam and Satyabrata S., A comprehensive thermodynamic analysis and performance evaluation of a transcritical ejector expansion CO2 adsorption refrigeration system integrated with thermoelectric sub-cooler. The Journal of Supercritical Fluids 182:105517 (2022)

  89. Ehab, S.A.; Ramy, H.M.; Ahmed, A.: A daily freshwater production of 50 m3/ton of silica gel using an adsorption-ejector combination powered by low-grade heat. J. Clean. Prod. 282, 124494 (2021)

    Google Scholar 

  90. Askalany, A.A.; Ali, E.S.: A new approach integration of ejector within adsorption desalination cycle reaching COP higher than one. Sustain. Energy Technol Assess. 41, 100766 (2020)

    Google Scholar 

  91. Ehab, S.A.; Hafiz, M.A.; Muhammad, S.; Ahmed, A.A.: A novel ejectors integration with two-stages adsorption desalination: Away to scavenge the ambient energy. Sustain. Energy Technol. Assess. 48, 101658 (2021)

    Google Scholar 

  92. Ahmed, A.; Ehab, S.A.; Ramy, H.M.: A novel cycle for adsorption desalination system with two stages-ejector for higher water production and efficiency. Desalination 496, 114753 (2020)

    Google Scholar 

  93. Ehab, S.A.; Ramy, H.M.; Naef, A.A.; Qasem, S.M.; Ahmed, A.: Solar-powered ejector-based adsorption desalination system integrated with a humidification-dehumidification system. Energy Convers. Manage. 238, 114113 (2021)

    Google Scholar 

  94. Chen, J.F.; Dai, Y.J.; Wang, R.Z.: Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings. Sol. Energy 151, 110–118 (2017)

    Google Scholar 

  95. Al-Hamed, K.H.; Dincer, I.: Investigation of a concentrated solar-geothermal integrated system with a combined ejector absorption refrigeration cycle for a small community. Int. J. Refrig 106, 407–426 (2019)

    Google Scholar 

  96. Yosaf, S.; Ozcan, H.: Effect of ejector location in absorption refrigeration cycles using different binary working fluids. Int. J. Air-Condition. Refrigerat. 27, 1950003 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Amin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M. Hybrid Thermally Driven Sorption–Ejector Systems: A Comprehensive Overview. Arab J Sci Eng 48, 11211–11235 (2023). https://doi.org/10.1007/s13369-023-08062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08062-7

Keywords

Navigation