Skip to main content
Log in

Green Synthesis of Zinc Oxide Nanoparticles Using Leaves Extract of Mariposa Christia vespertilionis and its Potential as Anode Materials in Sodium-Ion Batteries (SIBs)

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO-NPs) is one of the promising material as anode in sodium ion batteries (SIBs). However, due to the large mass and radius of Na-ions, designing electrode materials with high cycling efficiency remains a challenge. One of the attributions is from morphology of ZnO-NPs which can be altered during synthesis process. This study employs Mariposa Christia vespertilionis (MCV) leaves extract to produce ZnO-NP using green synthesis route. This method is safe and cost effective alternative to replace the common chemical methods. Phytochemical test of MCV contains phenols, flavonoids and alkaloids. The formation of ZnO-NPs after calcination at 700, 800 and 900 °C was confirmed via X-ray diffraction and Fourier-transforms infrared spectroscopy analysis. Scanning electron microscope images how irregular shape and agglomerated ZnO-NPs. The average particle sizes of ZnO-NPs range from 38 to 65 nm obtained from high-resolution transmission electron microscope. Nitrogen gas adsorption analysis revealed the pore size and pore volume decreased with the increasing calcination temperatures. The ZnO-NPs calcined at 700 °C exhibits the highest initial discharge capacity of 591 mAh g−1 at 0.1 C up to 100 cycles and better rate capability and could be further exploited as anode materials in SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ali, R.; Shanan, Z.J.; Saleh, G.M.; Abass, Q.: Green Synthesis and the study of some physical properties of MgO nanoparticles and their antibacterial activity. Iraq. J. Sci. 1, 266–276 (2020). https://doi.org/10.24996/ijs.2020.61.2.9

    Article  Google Scholar 

  2. Ifeanyichukwu, U.L.; Fayemi, O.E.; Ateba, C.N.: Green synthesis of zinc oxide nanoparticles from Pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules (2020). https://doi.org/10.3390/molecules25194521

    Article  Google Scholar 

  3. Lakkaboyana, S.K.; Khantong, S.; Asmel, N.K.; Obaidullah, S.; Kumar, V.; Kannan, K.; Venkateswarlu, K.; Yuzir, A.; Wan Yaacob, W.Z.: Indonesian Kaolin supported nZVI (IK-nZVI) used for the an efficient removal of Pb(II) from aqueous solutions: Kinetics, thermodynamics and mechanism. Environ. Chem. Eng. 9, 106483 (2021). https://doi.org/10.1016/j.jece.2021.106483

    Article  Google Scholar 

  4. Reddy, N.S.; Vijitha, R.; Naidu, B.R.; Rao, K.K.; Chang-Sik, H.; Venkateswarlu, K.: Benchmarking recent advances in hydrogen production using g-C3N4-based photocatalysts. Nano Energy 31, 108402 (2023). https://doi.org/10.1016/j.nanoen.2023.108402

    Article  Google Scholar 

  5. Akkaya, M.: Usage of graphene-doped tin oxide hybrid nanocomposites in compressor and electromagnetic modeling for single-phase compressor motor. Arab. J. Sci. Eng. 48, 3097–3110 (2023). https://doi.org/10.1007/s13369-022-07116-6

    Article  Google Scholar 

  6. Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J.: Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustai. Chem. Pharm. 15, 100223 (2020). https://doi.org/10.1016/j.scp.2020.100223

    Article  Google Scholar 

  7. Dharmalingam, P.; Palani, G.; Apsari, R.; Kannan, K.; Lakkaboyana, S.K.; Venkateswarlu, K.; Kumar, V.; Ali, Y.: Synthesis of metal oxides/sulfides-based nanocomposites and their environmental applications: A review. Mater. Today Sustain. 20, 100232 (2022). https://doi.org/10.1016/j.mtsust.2022.100232

    Article  Google Scholar 

  8. Vaseem, M.; Umar, A.; Hahn, Y.-B.: ZnO nanoparticles: growth, properties, and applications. Metal Oxide Nanostruct. Appl. 5, 10–20 (2010)

    Google Scholar 

  9. Abdelghany, T.M.; Al-Rajhi, A.M.; Yahya, R.; Bakri, M.M.; Al Abboud, M.A.; Yahya, R.; Qanash, H.; Bazaid, A.S.; Salem, S.S.: Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conv. Biorefinery 13(1), 417–430 (2023). https://doi.org/10.1007/s13399-022-03412-1

    Article  Google Scholar 

  10. Reddy, N.S.; Vijitha, R.; Naidu, B.R.; Rao, K.K.; Chang-Sik, H.; Venkateswarlu, K.: Benchmarking recent advances in hydrogen production using g-C3N4-based photocatalysts. Nano Energy 111, 108402 (2023). https://doi.org/10.1016/j.nanoen.2023.108402

    Article  Google Scholar 

  11. Diachenko, O.; Opanasuyk, A.; Kurbatov, D.; Opanasuyk, N.; Kononov, O.; Nam, D.; Cheong, H.: Surface morphology, structural and optical properties of MgO films obtained by spray pyrolysis technique. Acta. Phys. Pol. 130(3), 805–810 (2016)

    Article  Google Scholar 

  12. Ganasan, E.; Yusoff, H.M.; Azmi, A.A.; Chia, P.W.; Lam, S.S.; Kan, S.-Y.; Liew, R.K.; Venkateswarlu, K.; Teo, C.K.: Food additives for the synthesis of metal nanoparticles: A review. Environ. Chem. Lett. 21, 525–538 (2023). https://doi.org/10.1007/s10311-022-01473-2

    Article  Google Scholar 

  13. Koo, B.; Xiong, H.; Slater, M.D.; Prakapenka, V.B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C.S.; Rajh, T.; Shevchenko, E.V.: Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 12, 2429–2435 (2012). https://doi.org/10.1021/nl3004286

    Article  Google Scholar 

  14. Gu, L.; Zhang, M.; He, J.; Ni, P.: A porous cross-linked gel polymer electrolyte separator for lithium-ion batteries prepared by using zinc oxide nanoparticle as a foaming agent and filler. Electrochim. Acta 292, 769–778 (2018). https://doi.org/10.1016/j.electacta.2018.09.147

    Article  Google Scholar 

  15. Sawicki, M.; Shaw, L.L.: Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 5, 53129–53154 (2015). https://doi.org/10.1039/c5ra08321d

    Article  Google Scholar 

  16. Bresser, D.; Mueller, F.; Fiedler, M.; Krueger, S.; Kloepsch, R.; Baither, D.; Winter, M.; Paillard, E.; Passerini, S.: Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material. Chem. Mater. 25, 4977–4985 (2013). https://doi.org/10.1021/cm403443t

    Article  Google Scholar 

  17. Mou, H.; Xiao, W.; Miao, C.; Li, R.; Yu, L.: Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: A review. Front. Chem. 8, 141 (2020). https://doi.org/10.3389/fchem.2020.00141

    Article  Google Scholar 

  18. Yap, Y.H.; Azmi, A.A.; Mohd, N.K.; Yong, F.S.J.; Kan, S.-Y.; Thirmizir, M.Z.A.; Chia, P.W.: Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction. Arab. J. Sci. Eng. 45, 4797–4807 (2020). https://doi.org/10.1007/s13369-020-04595-3

    Article  Google Scholar 

  19. Naidu, B.R.; Lakshmidevi, J.; Venkateswarlu, K.; Lakkaboyana, S.K.: Highly economic and waste valorization strategy for multicomponent and Knoevenagel reactions using water extract of tamarind seed ash. Environ. Sci. Pollut. Res. 30, 71420–71429 (2023)

    Article  Google Scholar 

  20. Appa, R.M.; Lakshmidevi, J.; Naidu, B.R.; Venkateswarlu, K.: Pd-catalyzed oxidative homocoupling of arylboronic acids in WEPA: A sustainable access to symmetrical biaryls under added base and ligand-free ambient conditions. Mol. Catal. 501, 111366 (2021). https://doi.org/10.1016/j.mcat.2020.111366

    Article  Google Scholar 

  21. Tarascon, J.-M.: Na-ion versus Li-ion batteries: Complementarity rather than competitiveness. Joule 4, 1616–1620 (2020). https://doi.org/10.1016/j.joule.2020.06.003

    Article  Google Scholar 

  22. Sinha, S.; Didwal, P.N.; Nandi, D.K.; Cho, J.Y.; Kim, S.-H.; Park, C.-J.; Heo, J.: Atomic layer deposited-ZnO@3D-Ni-foam composite for Na-ion battery anode: A novel route for easy and efficient electrode preparation. Ceram. Int. 45, 1084–1092 (2019). https://doi.org/10.1016/j.ceramint.2018.09.289

    Article  Google Scholar 

  23. Saravanan, M.; Gopinath, V.; Chaurasia, M.K.; Syed, A.; Ameen, F.; Purushothaman, N.: Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog. 115, 57–63 (2018). https://doi.org/10.1016/j.micpath.2017.12.039

    Article  Google Scholar 

  24. Appa, R.M.; Prasad, S.S.; Lakshmidevi, J.; Naidu, B.R.; Narasimhulu, M.; Venkateswarlu, K.: Palladium-catalysed room-temperature Suzuki-Miyaura coupling in water extract of pomegranate ash, a bio-derived sustainable and renewable medium. Appl. Organomet. Chem. 33, e5126 (2019)

    Article  Google Scholar 

  25. Naidu, B.R.; Venkateswarlu, K.: WEPA: a reusable waste biomass-derived catalyst for external oxidant/metal-free quinoxaline synthesis via tandem condensation–cyclization–oxidation of α-hydroxy ketones. Green Chem. 24, 6215–6223 (2022). https://doi.org/10.1039/D2GC02386E

    Article  Google Scholar 

  26. Yusoff, H.M.; Idris, N.H.; Hipul, N.F.; Yusoff, M.; Izham, Z.M.; Bhat, I.U.H.: Green synthesis of zinc oxide nanoparticles using black tea extract and its potential as anode material in sodium-ion batteries. Malays. J. Chem. 22(2), 43–51 (2020)

    Google Scholar 

  27. Suppiah, D.D.; Julkapli, N.M.; Sagadevan, S.; Johan, M.R.: Eco-friendly green synthesis approach and evaluation of environmental and biological applications of iron oxide nanoparticles. Inorg. Chem. Commun. 152, 110700 (2023). https://doi.org/10.1016/j.inoche.2023.110700

    Article  Google Scholar 

  28. Mbatha, L.S.; Akinyelu, J.; Chukwuma, C.I.; Mokoena, M.P.; Kudanga, T.: Current trends and prospects for application of green synthesized metal nanoparticles in cancer and COVID-19 therapies. Viruses 15, 741 (2023)

    Article  Google Scholar 

  29. Hosseinzadeh, E.; Foroumadi, A.; Firoozpour, L.: What is the role of phytochemical compounds as capping agents for the inhibition of aggregation in the green synthesis of metal oxide nanoparticles? A DFT molecular level response. Inorg. Chem. Commun. 147, 110243 (2023)

    Article  Google Scholar 

  30. Yusoff, H.M.; Idris, N.H.; Fatin Hipul, N.; Fazila, N.; Yusoff, M.; Zafirah, N.; Izham, M.; Ul, I.; Bhat, H.: Green synthesis of zinc oxide nanoparticles using black tea extract and its potential as anode material in sodium-ion batteries. Malays. J. Chem. 22(20), 43–51 (2020)

    Google Scholar 

  31. Agarwal, H.; Shanmugam, V.: A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg. Chem. 94, 103423 (2020). https://doi.org/10.1016/j.bioorg.2019.103423

    Article  Google Scholar 

  32. Fakhari, S.; Jamzad, M.; Kabiri Fard, H.: Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. 12, 19–24 (2019). https://doi.org/10.1080/17518253.2018.1547925

    Article  Google Scholar 

  33. Singh, J.; Kumar, S.; Alok, A.; Upadhyay, S.K.; Rawat, M.; Tsang, D.C.W.; Bolan, N.; Kim, K.-H.: The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 214, 1061–1070 (2019). https://doi.org/10.1016/j.jclepro.2019.01.018

    Article  Google Scholar 

  34. Vijayakumar, S.; Mahadevan, S.; Arulmozhi, P.; Sriram, S.; Praseetha, P.K.: Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Mater. Sci. Semicond 82, 39–45 (2018). https://doi.org/10.1016/j.mssp.2018.03.017

    Article  Google Scholar 

  35. Selim, Y.A.; Azb, M.A.; Ragab, I.; M HMAE,: A green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 3445 (2020). https://doi.org/10.1038/s41598-020-60541-1

    Article  Google Scholar 

  36. Momin, K.; Thomas, S.: GC-MS analysis of antioxidant compounds present in different extracts of an endemic plant Dillenia scabrella (dilleniaceae) leaves and barks. Int. J. Pharm. Sci. Res. 11, 2262–2273 (2020)

    Google Scholar 

  37. Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F.: Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants. Molecule 25, 4672 (2020)

    Article  Google Scholar 

  38. Petridis, A.; Therios, I.; Samouris, G.; Tananaki, C.: Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L) and their relationship to antioxidant activity. Environ. Experiment. Botany 79, 37–43 (2012)

    Article  Google Scholar 

  39. Osman, M.S.; Ghani, Z.A.; Ismail, N.F.; Razak, N.A.A.; Jaapar, J.; Ariff, M.A.M.: Qualitative comparison of active compounds between red and green Mariposa Christia Vespertillonis leaves extracts. AIP Conf. Proc. 1885, 020282 (2017). https://doi.org/10.1063/1.5002476

    Article  Google Scholar 

  40. Osman, M.S.; Ghani, Z.A.; Ismail, N.F.; Razak, N.A.A.; Jaapar, J.; Ariff, M.A.M.: Qualitative comparison of active compounds between red and green Mariposa Christia Vespertillonis leaves extracts. In: AIP Conference Proceedings, American Institute of Physics Inc., 2017.

  41. Farizan, A.F.; Yusoff, H.M.; Badar, N.; Bhat, I.U.H.; Anwar, S.J.; Wai, C.P.; Asari, A.; Kasim, M.F.; Elong, K.: Green synthesis of magnesium oxide nanoparticles using Mariposa christia vespertilionis leaves extract and its antimicrobial study toward S aureus and E coli. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07282-7

    Article  Google Scholar 

  42. Nurul, S.A.S.; Hazilawati, H.; Mohd, R.S.; Mohd, F.H.R.; Noordin, M.M.; Norhaizan, M.E.: Subacute oral toxicity assesment of ethanol extract of Mariposa christia vespertilionis leaves in male Sprague Dawley rats. Toxicol. Res. 34, 85–95 (2018). https://doi.org/10.5487/TR.2018.34.2.085

    Article  Google Scholar 

  43. Lee, J.J.; Saiful Yazan, L.; Kassim, N.K.; Che Abdullah, C.A.; Esa, N.; Lim, P.C.; Tan, D.C.: Cytotoxic activity of Christia vespertilionis root and leaf extracts and fractions against breast cancer cell lines. Molecules (2020). https://doi.org/10.3390/molecules25112610

    Article  Google Scholar 

  44. Iftikhar, M.; Zahoor, M.; Naz, S.; Nazir, N.; Batiha, G.E.-S.; Ullah, R.; Bari, A.; Hanif, M.; Mahmood, H.M.: Green synthesis of silver nanoparticles using Grewia optiva leaf aqueous extract and isolated compounds as reducing agent and their biological activities. J. Nanomater. 2020, 1–10 (2020)

    Article  Google Scholar 

  45. Ezhilarasi, P.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C.: Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol. 6, 628–647 (2013)

    Article  Google Scholar 

  46. Naidu, B.R.; Lakshmidevi, J.; Naik, B.S.S.; Venkateswarlu, K.: Water extract of pomegranate ash as waste-originated biorenewable catalyst for the novel synthesis of chiral tert-butanesulfinyl aldimines in water. Mol. Catal. 511, 111719 (2021)

    Article  Google Scholar 

  47. Aldeen, T.S.; Ahmed Mohamed, H.E.; Maaza, M.: ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 160, 110313 (2022). https://doi.org/10.1016/j.jpcs.2021.110313

    Article  Google Scholar 

  48. Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P.: Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 5, 4993–5003 (2015). https://doi.org/10.1039/c4ra12784f

    Article  Google Scholar 

  49. Mahamad Yusoff, N.F.; Idris, N.H.; Md Din, M.F.; Majid, S.R.; Harun, N.A.; Rahman, M.M.: Electrochemical sodiation/desodiation into Mn3O4 nanoparticles. ACS Omega 5(45), 29158–29167 (2020). https://doi.org/10.1021/acsomega.0c03888

    Article  Google Scholar 

  50. Saidi, N.S.M.; Bhat, H.M.Y.I.U.H.; Appalasamy, S.; Hassim, A.D.M.; Asari, F.Y.A.; Wahab, N.H.A.: Stability and antibacterial properties of green synthesis silver nanoparticles using Nephelium lappaceum peel extract, Malaysian. J. Anal. Sci. 24: 940-953 (2020).

  51. Dulta, K.; Koşarsoy Ağçeli, G.; Chauhan, P.; Jasrotia, R.; Chauhan, P.K.: Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications. J. Clust. Sci. 33, 603–617 (2021). https://doi.org/10.1007/s10876-020-01962-w

    Article  Google Scholar 

  52. Ramya, V.; Kalaiselvi, V.; Kannan, S.K.; Shkir, M.; Ghramh, H.A.; Ahmad, Z.; Nithiya, P.; Vidhya, N.: Facile synthesis and characterization of zinc oxide nanoparticles using Psidium guajava leaf extract and their antibacterial applications. Arab. J. Sci. Eng. 47, 909–918 (2021). https://doi.org/10.1007/s13369-021-05717-1

    Article  Google Scholar 

  53. Idris, N.H.; Rahman, M.M.; Wang, J.-Z.; Liu, H.-K.: Microporous gel polymer electrolytes for lithium rechargeable battery application. J. Power. Sources 201, 294–300 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.141

    Article  Google Scholar 

  54. Awoyinka, O.A.; Balogun, I.O.; Ogunnowo, A.A.: Phytochemical screening and in vitro bioactivity of Cnidoscolus aconitifolius (Euphorbiaceae). J. Med. Plant Res. 1, 63–65 (2007)

    Google Scholar 

  55. Ayandele, A.A.; Adebiyi, A.O.: The phytochemical analysis and antimicrobial screening of extracts of Olax subscorpioidea. Afr. J. Biotechnol. 6, 868–870 (2007)

    Google Scholar 

  56. Dhawan, D.; Gupta, J.: Comparison of different solvents for phytochemical extraction potential from datura metel plant leaves. Int. J. Biol. Chem. 11, 17–22 (2016). https://doi.org/10.3923/ijbc.2017.17.22

    Article  Google Scholar 

  57. Masud, R.A.; Islam, M.S.; Haque, P.; Khan, M.N.I.; Shahruzzaman, M.; Khan, M.; Takafuji, M.; Rahman, M.M.: Preparation of novel chitosan/poly (ethylene glycol)/ZnO bionanocomposite for wound healing application: Effect of gentamicin loading. Scr. Mater. 12, 100785 (2020). https://doi.org/10.1016/j.mtla.2020.100785

    Article  Google Scholar 

  58. Alswat, A.A.; Bin Ahmad, M.; Saleh, T.A.: Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: Antibacterial activities. Colloid Interface Sci. Commun. 16, 19–24 (2017). https://doi.org/10.1016/j.colcom.2016.12.003

    Article  Google Scholar 

  59. Alamdari, S.; Sasani Ghamsari, M.; Lee, C.; Han, W.; Park, H.H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.: Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci. 10(10), 3620 (2020). https://doi.org/10.3390/app10103620

    Article  Google Scholar 

  60. Bharathi, D.; Bhuvaneshwari, V.: Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: antibacterial, antioxidant and cytotoxic activities. Res. Chem. Intermed. 45, 2065–2078 (2019). https://doi.org/10.1007/s11164-018-03717-9

    Article  Google Scholar 

  61. Chinnathambi, A.; Alharbi, S.A.; Lavarti, R.; Jhanani, G.K.; On-Uma, R.; Jutamas, K.; Anupong, W.: Larvicidal and pupicidal activity of phyto-synthesized zinc oxide nanoparticles against dengue vector aedes aegypti. Environ. Res. 1(216), 114574 (2023). https://doi.org/10.1016/j.envres.2022.114574

    Article  Google Scholar 

  62. Dodoo-Arhin, D.; Asiedu, T.; Agyei-Tuffour, B.; Nyankson, E.; Obada, D.; Mwabora, J.M.: Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Mater. Today: Proceed. 38, 809–815 (2021). https://doi.org/10.1016/j.matpr.2020.04.597

    Article  Google Scholar 

  63. de Almeida, W.L.; Ferreira, N.S.; Rodembusch, F.S.; de Sousa, V.C.: Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route. Mater. Chem. Phys. 15(258), 123926 (2021). https://doi.org/10.1016/j.matchemphys.2020.123926

    Article  Google Scholar 

  64. Ismail, M.A.; Taha, K.K.; Modwi, A.; Khezami, L.: Zno nanoparticles: surface and x-ray profile analysis. J. Ovonic Res. 14, 381–393 (2018)

    Google Scholar 

  65. Pourrahimi, A.M.; Liu, D.; Strom, V.; Hedenqvist, M.S.; Olsson, R.T.; Gedde, U.W.: Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications. J. Mater. Chem. 3, 17190–17200 (2015). https://doi.org/10.1039/c5ta03120f

    Article  Google Scholar 

  66. Shohel, M.; Miran, M.S.; Susan, M.A.B.H.; Mollah, M.Y.A.: Calcination temperature-dependent morphology of photocatalytic ZnO nanoparticles prepared by an electrochemical–thermal method. Res. Chem. Intermed. 42, 5281–5297 (2015). https://doi.org/10.1007/s11164-015-2358-x

    Article  Google Scholar 

  67. Heydari, M.; Ghoreishi, S.M.; Khoobi, A.: Novel electrochemical procedure for sensitive determination of Sudan II based on nanostructured modified electrode and multivariate optimization. Measurement 142, 105–112 (2019). https://doi.org/10.1016/j.measurement.2019.04.058

    Article  Google Scholar 

  68. Zhu, W.; Hu, C.; Ren, Y.; Lu, Y.; Song, Y.; Ji, Y.; Han, C.; He, J.: Green synthesis of zinc oxide nanoparticles using Cinnamomum camphora (L) Presl leaf extracts and its antifungal activity. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.106659

    Article  Google Scholar 

  69. Suresh, D.; Nethravathi, P.C.; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C.: Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semiconduct. Process. 1(31), 446–454 (2015). https://doi.org/10.1016/j.mssp.2014.12.023

    Article  Google Scholar 

  70. Nath, M.R.; Ahmed, A.N.; Gafur, M.A.; Miah, M.Y.; Bhattacharjee, S.: ZnO nanoparticles preparation from spent zinc–carbon dry cell batteries: studies on structural, morphological and optical properties. J. Asian Ceramic Soc. 6, 262–270 (2018). https://doi.org/10.1080/21870764.2018.1507610

    Article  Google Scholar 

  71. Duraisamy, E.; Prabunathan, P.; Mani, G.; Alshgari, R.A.; Elumalai, P.: [Zn(Salen)] metal complex-derived ZnO-implanted carbon slabs as anode material for lithium-ion and sodium-ion batteries. Mater. Chem. Front. 5, 3886–3896 (2021). https://doi.org/10.1039/d0qm01031f

    Article  Google Scholar 

  72. Durai, L.; Moorthy, B.; Issac Thomas, C.; Kyung Kim, D.; Kamala Bharathi, K.: Electrochemical properties of BiFeO3 nanoparticles: Anode material for sodium-ion battery application. Mater. Sci. Semicond 68, 165–171 (2017). https://doi.org/10.1016/j.mssp.2017.06.003

    Article  Google Scholar 

  73. Yepuri, V.; Kuchimanchi, D.; Senthil, C.; Sasidharan, M.: Synthesis of zno hollow nanospheres and investigation of their electrochemical reactivity for lithium-ion batteries. In: Proceedings of National Conference on Emerging Interdisciplinary Trends of Chemical Technology (2014). https://doi.org/10.13140/2.1.4646.4968

Download references

Acknowledgements

The authors would like to thank the research fund University Malaysia Terengganu (UMT), Talent and Publication Enhancement Research Grant (TAPE-RG Vot: 55259), Faculty of Science and Marine Environment, and Institute of Marine Biotechnology for the facilities provided throughout this study. The authors would also like to thank the Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Malaysia for their support in completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanis Mohd Yusoff.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, N.A., Yusoff, H.M., Idris, N.H. et al. Green Synthesis of Zinc Oxide Nanoparticles Using Leaves Extract of Mariposa Christia vespertilionis and its Potential as Anode Materials in Sodium-Ion Batteries (SIBs). Arab J Sci Eng 49, 623–635 (2024). https://doi.org/10.1007/s13369-023-08300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08300-y

Keywords

Navigation