Skip to main content
Log in

Usage of Graphene-Doped Tin Oxide Hybrid Nanocomposites in Compressor and Electromagnetic Modeling for Single-Phase Compressor Motor

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, the use of hybrid nanolubricants in cooling systems has become necessary due to their improved heat transfer properties. In this study, hybrid graphene oxide (GO)-doped tin oxide (SnO2) nanoparticles were synthesized by a simple chemical precipitation method to produce a nanolubricant. A mass fraction of 0.75% hybrid nanoparticles in polyol ester (POE) was used in the preparation of the nanolubricant. In the synthesis of hybrid nanoparticles, GO nanoparticles were doped with SnO2 at mass fraction of 1%, 2% and 3%. Single and hybrid nanolubricants were used to determine the performance values required for compressor operation. According to the results, when hybrid nanoparticles obtained by doping 2% doped GO nanoparticles were used, the power required for compressor operation decreased by 13.47% compared to pure POE. In addition, electromagnetic modeling of the single-phase auxiliary compressor motor was performed using finite element analysis software. For the hermetic reciprocating compressor, the electric current, power dissipation and magnetic field data were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

m r :

Mass flow of refrigerant (kg/h)

h 7 :

The enthalpy at the compressor inlet (kJ/kg)

h 1 :

The enthalpy at the compressor outlet (kJ/kg)

\(\dot{W}_{K}\) :

Compressor capacity (W)

NL:

Nanolubricant

B :

Flux density

E :

Electric field

J :

Current density

Ρ :

Conductivity

Ag:

Silver

Al2O3 :

Alumina

COP:

Coefficient of performance

Cu:

Copper

DIW:

Deionized water

FEA:

(Finite element analysis)

FESEM:

(Field emission scanning electron microscopy)

FTIR:

Fourier transform infrared spectrophotometer

GO:

Graphene oxide

Gr:

Graphene

H3PO4 :

Phosphoric acid

HCI:

Hydrochloric acid

KMnO4 :

Potassium permanganate

PAG46:

Polyalkylene glycol

POE:

Polyol ester

SDBS:

Sodium dodecyl benzene sulfonate

SiO2 :

Silicon oxide

SnO2 :

Tin oxide

TEM:

Transmission electron microscope

TiO2 :

Titanium dioxide

TX-100:

Triton X-100

XRD:

X-ray diffraction

References

  1. Çiftçi, E.: Pool boiling heat transfer properties of water-based dilute Fe+ ZnO hybrid nanofluid under low heat flux condition: a numerical study. gazi Üniversitesi Fen Bilimleri Dergisi Part C Tasarım ve Teknoloji 9(1), 84–94 (2021). https://doi.org/10.29109/gujsc.868777

    Article  Google Scholar 

  2. Afshari, F.; Tuncer, A.D.; Sözen, A.; Variyenli, H.I.; Khanlari, A.; Gürbüz, E.Y.: A comprehensive survey on utilization of hybrid nanofluid in plate heat exchanger with various number of plates. Int. J. Numer. Methods Heat Fluid Flow (2021). https://doi.org/10.1108/HFF-11-2020-0743

    Article  Google Scholar 

  3. Duangthongsuk, W.; Wongwises, S.: Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int. J. Heat Mass Transf. 52(7–8), 2059–2067 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023

    Article  Google Scholar 

  4. Tiwari, A.K.; Ghosh, P.; Sarkar, J.: Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger. Appl. Therm. Eng. 57(1–2), 24–32 (2013). https://doi.org/10.1016/j.applthermaleng.2013.03.047

    Article  Google Scholar 

  5. Martin, K.; Sözen, A.; Çiftçi, E.; Ali, H.M.: An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. Int. J. Thermophys. 41(9), 1–21 (2020). https://doi.org/10.1007/s10765-020-02716-6

    Article  Google Scholar 

  6. Sözen, A.; Gürü, M.; Menlik, T.; Karakaya, U.; Çiftçi, E.: Experimental comparison of Triton X-100 and sodium dodecyl benzene sulfonate surfactants on thermal performance of TiO2—deionized water nanofluid in a thermosiphon. Exp Heat Transf 31(5), 450–469 (2018). https://doi.org/10.1080/08916152.2018.1445673

    Article  Google Scholar 

  7. Akkaya, M.: MoO3 /PAG ve ZnO/PAG Nanoyağlayıcılarının Soğutma Sisteminin Performans Parametrelerine Etkilerinin Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 10(2), 521–532 (2021). https://doi.org/10.17798/bitlisfen.857657

    Article  Google Scholar 

  8. Ghachem, K.; Aich, W.; Kolsi, L.: Computational analysis of hybrid nanofluid enhanced heat transfer in cross flow micro heat exchanger with rectangular wavy channels. Case Stud. Therm. Eng. 24, 100822 (2021). https://doi.org/10.1016/j.csite.2020.100822

    Article  Google Scholar 

  9. Hashemi Karouei, S.H.; Ajarostaghi, S.S.M.; Gorji-Bandpy, M.; Hosseini Fard, S.R.: Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator. J. Therm. Anal. Calorim. 143(2), 1455–1466 (2021). https://doi.org/10.1007/s10973-020-09425-0

    Article  Google Scholar 

  10. Dezfulizadeh, A.; Aghaei, A.; Joshaghani, A.H.; Najafizadeh, M.M.: Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2-MWCNT ternary hybrid nanofluid based on empirical data. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-10867-3

    Article  Google Scholar 

  11. Irandoost Shahrestani, M.; Houshfar, E.; Ashjaee, M.; Allahvirdizadeh, P.: Convective heat transfer and pumping power analysis of MWCNT+ Fe3O4/water hybrid nanofluid in a helical coiled heat exchanger with orthogonal rib turbulators. Front. Energy Res. 9, 12 (2021). https://doi.org/10.3389/fenrg.2021.630805

    Article  Google Scholar 

  12. Soylu, S.K.; Atmaca, İ; Asiltürk, M.; Doğan, A.: Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids. Appl. Therm. Eng. 157, 113743 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113743

    Article  Google Scholar 

  13. Kiruba, R.; Jeevaraj, A.K.S.: Effect of temperature and concentration on the molecular interactions of Cu/ZnO-EG nanofluids using ultrasonic study. Integr. Ferroelectr. 150(1), 59–65 (2014). https://doi.org/10.1080/10584587.2014.873327

    Article  Google Scholar 

  14. Babu, P.N.; Mohankumar, D.; Kumar, P.M.; Makeshkumar, M.; Gokulnath, M.; Gurubalaji, K.; Ashok, M.: Energy efficient refrigeration system with simultaneous heating and cooling. Today Proc. Mater. (2021). https://doi.org/10.1016/j.matpr.2021.03.072

    Article  Google Scholar 

  15. Srinivas, M.N.; Padmanabhan, C.: Computationally efficient model for refrigeration compressor gas dynamics. Int. J. Refrig 25(8), 1083–1092 (2002). https://doi.org/10.1016/S0140-7007(01)00109-8

    Article  Google Scholar 

  16. Akkaya, M.; Menlik, T.; Sözen, A.: Performance enhancement of a vapor compression cooling system: an application of POE/Al2O3. J. Polytech. 24(3), 755–761 (2021). https://doi.org/10.2339/politeknik.679563

    Article  Google Scholar 

  17. Akkaya, M.; Menlik, T.; Sözen, A.; Gürü, M.: The effects of triton x–100 and tween 80 surfactants on the thermal performance of a nano-lubricant: an experimental study. Int. J. Precis. Eng. Manuf. Green Technol. 8(3), 955–967 (2021). https://doi.org/10.1007/s40684-020-00280-w

    Article  Google Scholar 

  18. Akkaya, M.; Menlik, T.; Sözen, A.; Gürü, M.: Experimental investigation of nanolubricant usage in a cooling system at different nanoparticle concentrations. Heat Transf. Res. 51(10), 949–965 (2020). https://doi.org/10.1615/HeatTransRes.2020033812

    Article  Google Scholar 

  19. Dey, P.; Mandal, B.K.: Performance enhancement of a shell-and-tube evaporator using Al2O3/R600a nanorefrigerant. Int. J. Heat Mass Transf. 170, 121015 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121015

    Article  Google Scholar 

  20. Chauhan, S.S.: Performance evaluation of ice plant operating on R134a blended with varied concentration of Al2O3/SiO2/PAG composite nanolubricant by experimental approach. Int. J. Refrig 113, 196–205 (2020). https://doi.org/10.1016/j.ijrefrig.2020.01.021

    Article  Google Scholar 

  21. Farahani, S.D.; Farahani, M.; Ghanbari, D.: Experimental study of the effect of spiral-star fins and nano-oil-refrigerant mixture on refrigeration cycle characteristics. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-10921-0

    Article  Google Scholar 

  22. Berman, D.; Erdemir, A.; Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17(1), 31–42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  Google Scholar 

  23. Yang, S.; Cui, X.; Zhou, Y.; Chen, C.: Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance. Int. J. Refrig. 110, 187–195 (2020). https://doi.org/10.1016/j.ijrefrig.2019.11.008

    Article  Google Scholar 

  24. Rajkumar, P.; Diwakar, K.; Gnanamuthu, R.M.; Subadevi, R.; Sivakumar, M.: Investigations on partially reduced graphene oxide capped sulfur/polyaniline composite as positive electrode material for lithium-sulfur battery. Mater. Res. Express 6(9), 094005 (2019)

    Article  Google Scholar 

  25. Raghavulu, K.V.; Rasu, N.G.: An experimental study on the improvement of coefficient of performance in vapor compression refrigeration system using graphene lubricant additives. Energy Sources Part A Recov. Utili. Environ. Eff. (2021). https://doi.org/10.1080/15567036.2021.1909186

    Article  Google Scholar 

  26. Sanukrishna, S.S.; Prakash, M.J.: Exploiting the potentials of graphene nano-platelets for the development of energy-efficient lubricants for refrigeration systems. In: Green Buildings and Sustainable Engineering, pp. 303–312. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1063-2_24

  27. Babarinde, T.O.; Akinlabi, S.A.; Madyira, D.M.; Adedeji, P.A.; Ekundayo, F.M.: Improving the performance of LPG with graphene-nanolubricant in a domestic refrigerator: an artificial intelligence approach. Int. J. Ambient Energy (2021). https://doi.org/10.1080/01430750.2021.1914160ç

    Article  Google Scholar 

  28. Karpe, M., Ghosh, S., Shindhe, N., Birajdar, R., Bhave, D.: Optimization of single-phase ınduction motor. In: 2019 IEEE Conference on Energy Conversion (CENCON), pp. 115–120. IEEE (2019). https://doi.org/10.1109/CENCON47160.2019.8974827

  29. Balci, S.: Senkron generatörlerde farklı stator oluk yapılarının uç gerilimine etkisinin sonlu elemanlar yöntemi ile analizi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 8(3), 947–957 (2019). https://doi.org/10.17798/bitlisfen.518348

    Article  Google Scholar 

  30. Choudhari, M.S.; Chaurasiya, P.K.; Thakur, M.; Paswan, M.; Sharma, V.K.: Performance investigation of the hydrogen-based energy storage system employing high-pressure metal hydride pair. Energy Sources Part A Recov. Util. Environ. Eff. (2021). https://doi.org/10.1080/15567036.2021.2000070

  31. Arockia Dhanraj, J.; Muthiya, S.J.; Subramaniam, M.; Salyan, S.: A comparative study with J48 and random tree classifier for predicting the state of hydraulic braking system through vibration signals. SAE Technical Paper, 28-0254 (2021)

  32. Hummers, W.S., Jr.; Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  Google Scholar 

  33. Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.W.; Voon, C.H.: Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

    Article  Google Scholar 

  34. Ranjan, P.; Agrawal, S.; Sinha, A.; Rao, T.R.; Balakrishnan, J.; Thakur, A.D.: A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci. Rep. 8(1), 1–13 (2018). https://doi.org/10.1038/s41598-018-30613-4

    Article  Google Scholar 

  35. Nugroho, A.; Bo, Z.; Mamat, R.; Azmi, W.H.; Najafi, G.; Khoirunnisa, F.: Extensive examination of sonication duration impact on stability of Al2O3-Polyol ester nanolubricant. Int. Commun. Heat Mass Transf. 126, 105418 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105418

    Article  Google Scholar 

  36. Novikova, A.A.; Burlakova, V.E.; Varavka, V.N.; Uflyand, I.E.; Drogan, E.G.; Irkha, V.A.: Influence of glycerol dispersions of graphene oxide on the friction of rough steel surfaces. J. Mol. Liq. 284, 1–11 (2019). https://doi.org/10.1016/j.molliq.2019.03.111

    Article  Google Scholar 

  37. Cengel, Y.A.; Boles, M.A.: Thermodynamics: An Engineering Approach 6th Edition (SI Units). The McGraw-Hill Companies, Inc., New York (2007)

    Google Scholar 

  38. Liu, J.; Li, Y.; Zhao, H.: A temperature measurement system based on pt100. In: 2010 International Conference on Electrical and Control Engineering, Wuhan (China), pp. 296–298 (2010). https://doi.org/10.1109/iCECE.2010.79

  39. Kawahito, S.; Cerman, A.; Tadokoro, Y.: A digital fluxgate magnetic sensor interface using sigma-delta modulation for weak magnetic field measurement. In: IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, USA, pp. 257–260 (2002). https://doi.org/10.1109/IMTC.2002.1006849

  40. Holman, J.P.: Experimental Methods for Engineers, p. 698. McGraw-Hill, Boston (2001)

    Google Scholar 

  41. Balci, S.: Evirici Çıkış Transformatörlerinin Modellenmesi ve Analizi. Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 53s., Ankara (2010)

  42. Bastos, J.P.A., Sadowski, N.: Electromagnetic Modeling by Finite Element Methods. Universidade Federal de Santa Catarina Florianopolis, Brazil, Copyright by Marcel Dekker (2003)

  43. Yamankaradeniz, R.; Horuz, İ; Coşkun, S.; Kaynaklı, Ö.; Yamankaradeniz, N.: 22-İklimlendirme Esasları ve Uygulamaları. Dora Yayıncılık (2012)

    Google Scholar 

  44. Ohunakin, O.S.; Adelekan, D.S.; Gill, J.; Atayero, A.A.; Atiba, O.E.; Okokpujie, I.P.; Abam, F.I.: Performance of a hydrocarbon driven domestic refrigerator based on varying concentration of SiO2 nano-lubricant. Int. J. Refrig. 94, 59–70 (2018). https://doi.org/10.1016/j.ijrefrig.2018.07.022

    Article  Google Scholar 

  45. Harichandran, R.; Paulraj, P.; Raja, S.M.P.; Raman, J.K.: Effect of h-BN solid nanolubricant on the performance of R134a–polyolester oil-based vapour compression refrigeration system. J. Braz. Soc. Mech. Sci. Eng. 41(3), 1–11 (2019). https://doi.org/10.1007/s40430-019-1645-7

    Article  Google Scholar 

  46. Kalluf, F.J.H.; Tutelea, L.N.; Boldea, I.; Espindola, A.: 2/4-POLE split-phase capacitor motor for small compressors: a comprehensive motor characterization. IEEE Trans. Ind. Appl. 50(1), 356–363 (2013). https://doi.org/10.1109/TIA.2013.2272913

    Article  Google Scholar 

  47. Kim, Y.K.; Choi, M.C.; Suh, K.H.; Ji, Y.C.; Wang, D.S.: High-speed induction motor development for small centrifugal compressor. In: ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No. 01EX501), vol. 2, pp. 891–894. IEEE (2001). https://doi.org/10.1109/ICEMS.2001.971821

  48. Lesieutre, B.; Kosterev, D.; Undrill, J.: Phasor modeling approach for single phase A/C motors. In: 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–7. IEEE (2008). https://doi.org/10.1109/PES.2008.4596554

Download references

Acknowledgements

The author thanks the Karamanoğlu Mehmetbey University (Faculty of Engineering) for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Akkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaya, M. Usage of Graphene-Doped Tin Oxide Hybrid Nanocomposites in Compressor and Electromagnetic Modeling for Single-Phase Compressor Motor. Arab J Sci Eng 48, 3097–3110 (2023). https://doi.org/10.1007/s13369-022-07116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07116-6

Keywords

Navigation