Skip to main content
Log in

Facile Synthesis and Characterization of Zinc Oxide Nanoparticles Using Psidium guajava leaf Extract and Their Antibacterial Applications

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Green synthesis of ZnO NPs with biological systems is becoming a growing field, especially in plant extracts nanotechnology. Biological reducing agents have been interpreted worldwide to lessen the impact of toxic chemicals applied in development of nanoparticles. In present research, work deals with green synthesis & characterization of ZnO NPs via Psidium guajava leaf extract, also to evaluate their antibacterial action against some selected bacteria. The preparation of ZnO NPs was attained via sol–gel assisted microwave irradiation process. The XRD pattern confirms the hexagonal phase of ZnO and crystalline size to be ~ 15.8 nm. FTIR analysis depicts the bio functional groups present in the surface of the ZnO nanoparticles, SEM predicts the size and morphology of the sample, and it shows rod-shaped surface. Then, the EDAX results showed the purity & elemental stoichiometry of the ZnO nanoparticles. Also, the UV was performed to investigate the optical nature of the prepared ZnO nanoparticles. Also, the antibacterial activity results revealed significantly inhibited both types of bacteria in higher concentrations. This study also suggests that green synthesized ZnO nanoparticles can an excellent antibacterial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B.: Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22(12), 1825–1834 (2017)

    Article  Google Scholar 

  2. Yu, L.; Liu, S.; Yang, B.; Wei, J.; Lei, M.; Fan, X.: Sn–Ga co-doped ZnO nanobelts fabricated by thermal evaporation and application to ethanol gas sensors. Mater. Lett. 141, 79–82 (2015)

    Article  Google Scholar 

  3. Safawo, T.; Sandeep, B.V.; Pola, S.; Tadesse, A.: Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano 3, 56–63 (2018)

    Article  Google Scholar 

  4. Ata, S.; Shaheen, I.; Ul Qurat, A.; Ghafoor, S.; Sultan, M.; Majid, F.; Bibi, I.; Iqbal, M.: Graphene and silver decorated ZnO composite synthesis characterization and photocatalytic activity evaluation. Diamond Related Mater. 90, 26–31 (2018)

    Article  Google Scholar 

  5. Saxena, A.; Tripathi, R.; Singh, R.: Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig. J. Nanomater. Bios. 5(2), 427–432 (2010)

    Google Scholar 

  6. Yuvakkumar, R.; Suresh, J.; Nathanael, A.J.; Sundrarajan, M.; Hong, S.I.: Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C41, 17–27 (2014)

    Article  Google Scholar 

  7. Noorjahan, C.; Shahina, S.J.; Deepika, T.; Rafiq, S.: Green synthesis and characterization of zinc oxide nanoparticles from Neem (Azadirachta indicia). Int. J. Sci. Eng. Technol. Res. 4(30), 5751–5753 (2015)

    Google Scholar 

  8. Ansilin, S.; Nair, J.K.; Aswathy, C.; Rama, V.; Peter, J.; Persis, J.J.: Green synthesis and characterisation of copper oxide nanoparticles using Azadirachta indica (Neem) leaf aqueous extract. J. Nanosci. Technol. 2(5), 221–223 (2016)

    Google Scholar 

  9. Karthik, S.; Siva, P.; Balu, K.S.; Suriyaprabha, R.; Rajendran, V.; Maaza, M.: Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity UV resistance, and antibacterial activity. Adv. Powder Technol. 28(12), 3184–3194 (2017)

    Article  Google Scholar 

  10. Manokari, M.; Shekhawat, M.S.: Zinc oxide nanoparticles synthesis from Moringa oleifera Lam. Extracts and their characterization. World Sci. News 55, 252–262 (2016)

    Google Scholar 

  11. Saha, R.; Subramani, K.; Petchi Muthu Raju, S.A.K.; Rangaraj, S.; Venkatachalam, R.: Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Progress Org. Coat. 124, 80–91 (2018)

    Article  Google Scholar 

  12. Parthasarathy, G.; Saroja, M.; Venkatachalam, M.; Shankar, S.; Evanjelene, V.: Green synthesis of zinc oxide nanoparticles-review paper. World J. Pharm. Pharmaceutical Sci. 5(4), 922–931 (2016)

    Google Scholar 

  13. Ngom, B.D.; Mpahane, T.; Manyala, N.; Nemraoui, O.; Buttner, U.; Kana, J.B.; Fasasi, A.Y.; Maaza, M.; Beye, A.C.: Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 255(7), 4153–4158 (2009)

    Article  Google Scholar 

  14. Ngom, B.D.; Mpahane, T.; Manikandan, E.; Maaza, M.: ZnO nano-discs by lyophilization process: Size effects on their intrinsic luminescence. J. Alloy. Compd. 656, 758–763 (2016)

    Article  Google Scholar 

  15. Devi, K.R.; Selvan, G.; Karunakaran, M.; Kasirajan, K.; Shkir, M.; AlFaify, S.: A SILAR fabrication of nanostructured ZnO thin films and their characterizations for gas sensing applications: An effect of Ag concentration. Superlatt. Microstruct. 143, 106547 (2020)

    Article  Google Scholar 

  16. Arun Kumar, K.D.; Valanarasu, S.; Ponraj, J.S.; Fernandes, B.J.; Shkir, M.; AlFaify, S.; Murahari, P.; Ramesh, K.: Effect of Er doping on the ammonia sensing properties of ZnO thin films prepared by a nebulizer spray technique. J. Phys. Chem. Solids 144, 109513 (2020)

    Article  Google Scholar 

  17. Kaviyarasu, K.; Magdalane, C.M.; Manikandan, E.; Jayachandran, M.; Ladchumananandasivam, R.; Neelamani, S.; Maaza, M.: Well-aligned graphene oxide nanosheets decorated with zinc oxide nanocrystals for high performance photocatalytic application. Int. J. Nanosci. 14(03), 1550007 (2015)

    Article  Google Scholar 

  18. Shkir, M.; Hamdy, M.S.; AlFaify, S.: A facile one pot flash combustion synthesis of ZnO nanoparticles and their characterizations for photocatalytic applications. J. Mol. Struct. 1197, 610–616 (2019)

    Article  Google Scholar 

  19. Chandekar, K.V.; Shkir, M.; Al-Shehri, B.M.; AlFaify, S.; Halor, R.G.; Khan, A.; Al-Namshah, K.S.; Hamdy, M.S.: Visible light sensitive Cu doped ZnO: Facile synthesis, characterization and high photocatalytic response. Mater. Character. 165, 110387 (2020)

    Article  Google Scholar 

  20. Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I.: Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci.: Nanosci. Nanotechnol. 9(1), 015008 (2018)

    Google Scholar 

  21. Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Khamlich, S.; Maaza, M.: Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine 12(15), 1767–1789 (2017)

    Article  Google Scholar 

  22. Biswas, B.; Rogers, K.; McLaughlin, F.; Daniels, D.; Yadav, A.: Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. Int. J. Microbiol. 2013, 746165 (2013)

    Article  Google Scholar 

  23. Rehan, M.; Ahmed-Farid, O.A.; Ibrahim, S.R.; Hassan, A.A.; Abdelrazek, A.M.; Khafaga, N.I.; Khattab, T.A.: Green and sustainable encapsulation of Guava leaf extracts (Psidium guajava L.) into alginate/starch microcapsules for multifunctional finish over cotton gauze. ACS Sustain. Chem. Eng. 7(22), 18612–18623 (2019)

    Article  Google Scholar 

  24. Naseer, S.; Hussain, S.; Naeem, N.; Pervaiz, M.; Rahman, M.: The phytochemistry and medicinal value of Psidium guajava (guava). Clin. Phytosci. 4(1), 1–8 (2018)

    Article  Google Scholar 

  25. Barbalho, S.M.; Farinazzi-Machado, F.M.V.; de Alvares Goulart, R.; Brunnati, A.S.; Otoboni, A.M.; Ottoboni, B.: Psidium guajava (Guava): A plant of multipurpose medicinal applications. Med Aromat Plants 1(104), 2167–412 (2012)

    Google Scholar 

  26. Matinise, N.; Kaviyarasu, K.; Mongwaketsi, N.; Khamlich, S.; Kotsedi, L.; Mayedwa, N.; Maaza, M.: Green synthesis of novel zinc iron oxide (ZnFe2O4) nanocomposite via Moringa Oleifera natural extract for electrochemical applications. Appl. Surf. Sci. 446, 66–73 (2018)

    Article  Google Scholar 

  27. Kafle, A.; Mohapatra, S.S.; Reddy, I.; Chapagain, M.: A review on medicinal properties of Psidium guajava. J. Med. Plants 6(4), 44–47 (2018)

    Google Scholar 

  28. Abdelrahim, S.; Almagboul, A.; Omer, M.; Elegami, A.: Antimicrobial activity of Psidium guajava L. Fitoterapia 73(7–8), 713–715 (2002)

    Article  Google Scholar 

  29. Jaiarj, P.; Khoohaswan, P.; Wongkrajang, Y.; Peungvicha, P.; Suriyawong, P.; Sumal Saraya, M.L.; Ruangsomboon, O.: Anticough and antimicrobial activities of Psidium guajava Linn leaf extract. J. Ethnopharmacol. 67(2), 203–212 (1999)

    Article  Google Scholar 

  30. Lutterodt, G.D.: Inhibition of microlax-induced experimental diarrhoea with narcotic-like extracts of Psidium guajava leaf in rats. J. Ethnopharmacol. 37(2), 151–157 (1992)

    Article  Google Scholar 

  31. Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M.: Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells, Nanomed., Biotechnol. 46(4), 838–852 (2018)

    Article  Google Scholar 

  32. Mohamed, H.E.A.; Afridi, S.; Khalil, A.T.; Zia, D.; Iqbal, J.; Ullah, I.; Shinwari, Z.K.; Maaza, M.: Biosynthesis of silver nanoparticles from Hyphaene thebaica fruits and their in vitro pharmacognostic potential. Mater. Res. Express 6(10), 10509 (2019)

    Article  Google Scholar 

  33. Thema, F.T.; Manikandan, E.; Dhlamini, M.S.; Maaza, M.: Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 161, 124–127 (2015)

    Article  Google Scholar 

  34. Fakhari, S.; Jamzad, M.; Kabiri Fard, H.: Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem. Lett. Rev. 12(1), 19–24 (2019)

    Article  Google Scholar 

  35. Sharmila, G.; Thirumarimurugan, M.; Muthukumaran, C.: Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J. 145, 578–587 (2019)

    Article  Google Scholar 

  36. Begum, S.; Hassan, S.I.; Ali, S.N.; Siddiqui, B.S.: Chemical constituents from the leaves of Psidium guajava. Nat. Prod. Res. 18(2), 135–140 (2004)

    Article  Google Scholar 

  37. Ogunwande, I.A.; Olawore, N.O.; Adeleke, K.A.; Ekundayo, O.; Koenig, W.A.: Chemical composition of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour Fragrance J. 18(2), 136–138 (2003)

    Article  Google Scholar 

  38. Pino, J.A.; Agüero, J.; Marbot, R.; Fuentes, V.: Leaf oil of Psidium guajava L from Cuba. J. Essential Oil Res. 13(1), 61–62 (2001)

    Article  Google Scholar 

  39. Fu, H.-Z.; Luo, Y.-M.; Li, C.-J.; Yang, J.-Z.; Zhang, D.-M.: Psidials A−C, Three Unusual Meroterpenoids from the Leaves of Psidium guajava L. Org. Lett. 12(4), 656–659 (2010)

    Article  Google Scholar 

  40. Sharma, D.; Kanchi, S.; Bisetty, K.: Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 12(8), 3576–3600 (2019)

    Article  Google Scholar 

  41. Gade, A.; Bonde, P.; Ingle, A.; Marcato, P.; Duran, N.; Rai, M.: Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy 2(3), 243–247 (2008)

    Article  Google Scholar 

  42. Kumar, H.; Rani, R.: Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int. Lett. Chem., Phys. Astron. 14, 26–36 (2013)

    Article  Google Scholar 

  43. Kumar, G.S.; Rajendran, S.; Karthi, S.; Govindan, R.; Girija, E.K.; Karunakaran, G.; Kuznetsov, D.: Green synthesis and antibacterial activity of hydroxyapatite nanorods for orthopedic applications. MRS Commun. 7(2), 183–188 (2017)

    Article  Google Scholar 

  44. Prasanna, A.; Venkatasubbu, G.D.: Sustained release of amoxicillin from hydroxyapatite nanocomposite for bone infections. Prog. Biomater. 7(4), 289–296 (2018)

    Article  Google Scholar 

  45. Munajad, A.; Subroto, C.: Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2), 364 (2018)

    Article  Google Scholar 

  46. Srivastava, R.: Synthesis and characterization techniques of nanomaterials. Int. J. Green Nanotechnol. 4(1), 17–27 (2012)

    Article  Google Scholar 

  47. Thaya, R.; Malaikozhundan, B.; Vijayakumar, S.; Sivakamavalli, J.; Jeyasekar, R.; Shanthi, S.; Vaseeharan, B.; Ramasamy, P.; Sonawane, A.: Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb. Pathog. 100, 124–132 (2016)

    Article  Google Scholar 

  48. Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, M.J.: Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49(11), 1749–1755 (2009)

    Article  Google Scholar 

  49. Magaldi, S.; Mata-Essayag, S.; Hartung de Capriles, C.; Perez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y.: Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8(1), 39–45 (2004)

    Article  Google Scholar 

  50. Shkir, M.; Al-Shehri, B.M.; Pachamuthu, M.; Khan, A.; Chandekar, K.V.; AlFaify, S.; Hamdy, M.S.: A remarkable improvement in photocatalytic activity of ZnO nanoparticles through Sr doping synthesized by one pot flash combustion technique for water treatments. Colloids Surf. A: Physicochem. Eng. Asp. 587, 124340 (2020)

    Article  Google Scholar 

  51. Shkir, M.; Chandekar, K.V.; Alshehri, B.M.; Khan, A.; AlFaify, S.; Hamdy, M.S.: A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10(6), 1811–1823 (2020)

    Article  Google Scholar 

  52. Shakir, M.; Kushwaha, S.; Maurya, K.; Bhagavannarayana, G.; Wahab, M.: Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149(45), 2047–2049 (2009)

    Article  Google Scholar 

  53. Shkir, M.: Noticeable impact of Er doping on structural, vibrational, optical, dielectric and electrical parameters of flash combustion synthesized NiO NPs for optoelectronic applications. Inorg. Chem. Commun. 121, 108229 (2020)

    Article  Google Scholar 

  54. Shkir, M.; Chandekar, K.V.; Khan, A.; El-Toni, A.M.; AlFaify, S.: A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater. Sci. Semicond. Process. 107, 104807 (2020)

    Article  Google Scholar 

  55. AlFaify, S.; Shkir, M.: A facile one pot synthesis of novel pure and Cd doped PbI2 nanostructures for electro-optic and radiation detection applications. Opt. Mater. 88, 417–423 (2019)

    Article  Google Scholar 

  56. Janjal, S.; Agale, A.; Rajbhoj, A.; Gaikwad, S.: Synthesis and electrochemical characterization of zinc oxide nanoparticles using green method. Int. J. Appl. Res. 10, 2394–7500 (2017)

    Google Scholar 

  57. El-Arab, N.B.: Synthesis and characterization of zinc oxide nanoparticles using green and chemical synthesis techniques for phenol decontamination. Int. J. Nanoelectron. Mater. 11(2), 179–194 (2018)

    Google Scholar 

  58. Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B.: Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 137, 886–891 (2015)

    Article  Google Scholar 

  59. Shreema, K.; Kalaiselvi, V.; Mathammal, R.: Green synthesis and characterization of Zinc Oxide nanoparticles using Leaf extract of Evolvulus Alsinoides. Studies Indian Place Names 40(18), 763–778 (2020)

    Google Scholar 

  60. Umar, H.; Kavaz, D.; Rizaner, N.: Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomed. 14, 87 (2019)

    Article  Google Scholar 

  61. Shkir, M.; AlFaify, S.: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7(1), 16091 (2017)

    Article  Google Scholar 

  62. Shkir, M.; Abbas, H.; Siddhartha, Z.R.K.: Effect of thickness on the structural, optical and electrical properties of thermally evaporated PbI2 thin films. J. Phys. Chem. Solids 73(11), 1309–1313 (2012)

    Article  Google Scholar 

  63. Tien, L.C.; Wang, H.T.; Kang, B.S.; Ren, F.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J.: Room-temperature hydrogen-selective sensing using single pt-coated ZnO nanowires at microwatt power levels. Electrochem. Solid-State Lett. 8(9), G230 (2005)

    Article  Google Scholar 

  64. Lv, Y.; Guo, L.; Xu, H.; Chu, X.: Gas-sensing properties of well-crystalline ZnO nanorods grown by a simple route. Phys. E. 36(1), 102–105 (2007)

    Article  Google Scholar 

  65. Nwanya, A.C.; Deshmukh, P.R.; Osuji, R.U.; Maaza, M.; Lokhande, C.D.; Ezema, F.I.: Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film. Sens. Actuators, B Chem. 206, 671–678 (2015)

    Article  Google Scholar 

  66. Simo, A.; Mwakikunga, B.; Sone, B.T.; Julies, B.; Madjoe, R.; Maaza, M.: VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing. Int. J. Energy 39(15), 8147–8157 (2014)

    Google Scholar 

  67. Khamlich, S.; Abdullaeva, Z.; Kennedy, J.V.; Maaza, M.: High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 405, 329–336 (2017)

    Article  Google Scholar 

  68. Darezereshki, E.; Alizadeh, M.; Bakhtiari, F.; Schaffie, M.; Ranjbar, M.: A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions. Appl. Clay Sci. 54(1), 107–111 (2011)

    Article  Google Scholar 

  69. Tari, O.; Aronne, A.; Addonizio, M.L.; Daliento, S.; Fanelli, E.; Pernice, P.: Sol–gel synthesis of ZnO transparent and conductive films: A critical approach. Sol. Energy Mater. Sol. Cells 105, 179–186 (2012)

    Article  Google Scholar 

  70. Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Shobiya, M.: Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed. Pharmacother. 84, 1213–1222 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors from KKU would like to express their gratitude to Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through Research Groups Program under Grant No. R.G.P.1/102/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kalaiselvi.

Ethics declarations

Conflict of interest

None to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, V., Kalaiselvi, V., Kannan, S.K. et al. Facile Synthesis and Characterization of Zinc Oxide Nanoparticles Using Psidium guajava leaf Extract and Their Antibacterial Applications. Arab J Sci Eng 47, 909–918 (2022). https://doi.org/10.1007/s13369-021-05717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05717-1

Keywords

Navigation