Skip to main content
Log in

Adsorption of Methyl Violet 2B and Direct Red 28 From Single and Binary Solution Using a Magnetic Zeolite/TiO2/Fe3O4 Nanocomposite

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this research, a magnetic adsorbent called ZTF was synthesized by combining zeolite and TiO2. Various analytical techniques including SEM, EDS, BET, FTIR, XRD, Zeta potential, and VSM were utilized to characterize the structure of ZTF. In order to understand the pollutant removal performance of the ZTF, Methyl violet 2B (MV-2B) and Direct red 28 (DR-28) were chosen as target pollutants in adsorption experiments. The effects of the contact time, initial dye concentration, ZTF amount, temperature, ionic strength and initial pH of the solution on the adsorption of MV-2B and DR-28 were studied. The removal of MV-2B and DR-28 were found to be 94.5% and 96.8% at the original pH, with a ZTF amount of 1.5 g/L, an initial dye concentration of 20 mg/L, a contact time of 60 min, and at a temperature of 23 °C respectively. The experimental data indicated that Freundlich isotherm and pseudo second order model were suitable for the adsorption of MV-2B and DR-28. Moreover, the adsorption of DR-28 and MV-2B were found to be exothermic and spontaneous at the studied temperature range. Furthermore, the study also explored the removal of MV-2B and DR-28 in a binary system. The results showed that ZTF exhibited suitable performance for the removal of both dyes in the binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Foroutan, R.; Peighambardoust, S.J.; Esvandi, Z.; Khatooni, H.; Ramavandi, B.: Evaluation of two cationic dyes removal from aqueous environments using CNT/MgO/CuFe2O4 magnetic composite powder: a comparative study. J. Env. Chem. Eng. 9, 104752 (2021). https://doi.org/10.1016/j.jece.2020.104752

    Article  Google Scholar 

  2. Jawad, A.H.; Abdulhameed, A.S.; Reghioua, A.; Yaseen, Z.M.: Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int. J. Bio. Macromol. 163, 756–765 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.014

    Article  Google Scholar 

  3. Bayat, M.; Javanbakht, V.; Esmaili, J.: Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye. Int. J. Bio. Macromol. 116, 607–619 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.012

    Article  Google Scholar 

  4. Altintig, E.; Alsancak, A.; Karaca, H.; Angın, D.; Altundag, H.: The comparison of natural and magnetically modified zeolites as an adsorbent in methyl violet removal from aqueous solutions. Chem. Eng. Com. 209(4), 555–569 (2021). https://doi.org/10.1080/00986445.2021.1874368

    Article  Google Scholar 

  5. Foroutan, R.; Peighambardoust, S.J.; Peighambardoust, S.H.; Pateiro, M.; Lorenzo, J.M.: Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic nanocomposite from aqueous solutions: a kinetic. Equilib. Thermodyn. Study. Molec. 26, 2241 (2021). https://doi.org/10.3390/molecules26082241

    Article  Google Scholar 

  6. Ecer, Ü.; Zengin, A.; Sahan, T.: Magnetic clay\zeolitic imidazole framework nanocomposite (ZIF-8@Fe3O4@BNT) for reactive orange 16 removal from liquid media. Coll. Surf. A: Physicochem. Eng. Asp. 630, 127558 (2021). https://doi.org/10.1016/j.colsurfa.2021.127558

    Article  Google Scholar 

  7. Piri, F.; Mollahosseini, A.; Khadir, A.; Hosseini, M.M.: Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. J. Env. Chem. Eng. 7, 103338 (2019). https://doi.org/10.1016/j.jece.2019.103338

    Article  Google Scholar 

  8. Fındık, S.: Decolorization of direct black 22 by photo fenton like method using UV light and zeolite modified zinc ferrite: kinetics and thermodynamic. Acta Chim. Slov. 69(3), 552–563 (2022). https://doi.org/10.17344/acsi.2022.7431

    Article  Google Scholar 

  9. Kazemi, J.; Javanbakht, V.: Alginate beads impregnated with magnetic Chitosan@Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution. Int. J. Bio. Macromol. 154, 1426–1437 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.024

    Article  Google Scholar 

  10. Huang, T.; Yan, M.; He, K.; Huang, Z.; Zeng, G.; Chen, A.; Peng, M.; Li, H.; Yuan, L.; Chen, G.: Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J. Coll. and Inter. Sci. 543, 43–51 (2019). https://doi.org/10.1016/j.jcis.2019.02.030

    Article  Google Scholar 

  11. Badeenezhad, A.; Azhdarpoor, A.; Bahrami, S.; Yousefinejad, S.: Removal of methylene blue dye from aqueous solutions by natural clinoptilolite and clinoptilolite modified by iron oxide nanoparticles. Mol. Simul. 45(7), 564–571 (2019). https://doi.org/10.1080/08927022.2018.1564077

    Article  Google Scholar 

  12. Loiola, A.R.; Bessa, R.A.; Oliveira, C.P.; Freitas, A.D.L.; Soares, S.A.; Bohn, F.; Pergher, S.B.C.: Magnetic zeolite composites: classification, synthesis routes, and technological applications. J. Magn. Magn. Mat. 560, 169651 (2022). https://doi.org/10.1016/j.jmmm.2022.169651

    Article  Google Scholar 

  13. Mustapha, S.; Tijani, J.O.; Ndamitso, M.M.; Abdulkareem, A.S.; Shuaibd, D.T.; Mohammed, A.K.: Adsorptive removal of pollutants from industrial wastewater using mesoporous kaolin and kaolin/TiO2 nanoadsorbents. Env. Nanotech. Monit. Man. 15, 100414 (2021). https://doi.org/10.1016/j.enmm.2020.100414

    Article  Google Scholar 

  14. Peyghami, A.; Moharrami, A.; Rashtbari, Y.; Afshin, S.; Vosuoghi, M.; Dargahi, A.: Evaluation of the efficiency of magnetized clinoptilolite zeolite with Fe3O4 nanoparticles on the removal of basic violet 16 (BV16) dye from aqueous solutions. J. Disp. Sci. Techn. 44(2), 278–287 (2023). https://doi.org/10.1080/01932691.2021.1947847

    Article  Google Scholar 

  15. Nicola, R.; Muntean, S.G.; Nistor, M.A.; Putz, A.M.; Almasy, L.; Sacarescu, L.: Highly efficient and fast removal of colored pollutants from single and binary systems, using magnetic mesoporous silica. Chemosp. 261, 127737 (2020). https://doi.org/10.1016/j.chemosphere.2020.127737

    Article  Google Scholar 

  16. Mahmoodi, M.; Javanbakht, V.: Fabrication of Zn-based magnetic zeolitic imidazolate framework bionanocomposite using basil seed mucilage for removal of azo cationic and anionic dyes from aqueous solution. Int. J. Bio. Macromol. 167, 1076–1090 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.062

    Article  Google Scholar 

  17. Foroutan, R.; Peighambardoust, S.J.; Hemmati, S.; Khatooni, H.; Ramavandi, B.: Preparation of clinoptilolite/starch/CoFe2O4 magnetic nanocomposite powder and its elimination properties for cationic dyes from water and wastewater. Int. J. Bio. Macromol. 189, 432–442 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.144

    Article  Google Scholar 

  18. León, A.; Reuquen, P.; Garín, C.; Segura, R.; Vargas, P.; Zapata, P.; Orihuela, P.A.: FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. App. Sci. 7, 49 (2017). https://doi.org/10.3390/app7010049

    Article  Google Scholar 

  19. Fındık, S.: Removal of diazo dye direct red 28 and tetra azo dye direct black 22 using synthesized magnetic kaolin supported zinc ferrite. Acta Chim. Slov. 69(2), 336–348 (2022). https://doi.org/10.17344/acsi.2021.7289

    Article  Google Scholar 

  20. Olusegun, S.J.; Mohallem, N.D.S.: Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles. Env. Poll. 260, 114019 (2020). https://doi.org/10.1016/j.envpol.2020.114019

    Article  Google Scholar 

  21. Meroufel, B.; Benali, O.; Benyahia, M.; Benmoussa, Y.; Zenasni, M.A.: Adsorptive removal of anionic dye from aqueous solutions by algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies. J. Mater. Env. Sci. 4(3), 482–491 (2013)

    Google Scholar 

  22. Bonetto, L.R.; Ferrarini, F.; Marco, C.; Crespo, J.S.; Guégan, R.; Giovanela, M.: Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent. J. Wat. Proc. Eng. 6, 11–20 (2015). https://doi.org/10.1016/j.jwpe.2015.02.006

    Article  Google Scholar 

  23. Chung, J.; Sharma, N.; Kim, M.; Yun, K.: Activated carbon derived from sucrose and melamine as low-cost adsorbent with fast adsorption rate for removal of methylene blue in wastewaters. J Wat. Proc. Eng. 47, 102763 (2022). https://doi.org/10.1016/j.jwpe.2022.102763

    Article  Google Scholar 

  24. Majid, Z.; AbdulRazak, A.A.; Noori, W.A.H.: Modification of zeolite by magnetic nanoparticles for organic dye removal. Arab. J. Sci. Eng. 44, 5457–5474 (2019). https://doi.org/10.1007/s13369-019-03788-9

    Article  Google Scholar 

  25. Sivalingam, S.; Sen, S.: Efficient removal of textile dye using nanosized fly ash derived zeolite-x: kinetics and process optimization study. J. Taiw. Inst. Chem. Eng. 96, 305–314 (2019). https://doi.org/10.1016/j.jtice.2018.10.032

    Article  Google Scholar 

  26. Bhowmik, M.; Kanmani, M.; Debnath, A.; Saha, B.: Sono-assisted rapid adsorption of anionic dye onto magnetic CaFe2O4/MnFe2O4 nanocomposite from aqua matrix. Pow. Tech. 354, 496–504 (2019). https://doi.org/10.1016/j.powtec.2019.06.009

    Article  Google Scholar 

  27. Mojarad, A.A.; Tamjidi, S.; Esmaeili, H.: Clay/starch/Fe3O4 nanocomposite as an efficient adsorbent for the removal of methyl violet dye from aqueous media. Int. J. Env. Analy. Chem. 102(19), 8159–8180 (2022). https://doi.org/10.1080/03067319.2020.1845665

    Article  Google Scholar 

  28. Foroutan, R.; Mohammadi, R.; Ahmadi, A.; Bikhabar, G.; Babaei, F.; Ramavandi, B.: Impact of ZnO and Fe3O4 magnetic nanoscale on the methyl violet 2B removal efficiency of the activated carbon oak wood. Chemosp. 286, 131632 (2022). https://doi.org/10.1016/j.chemosphere.2021.131632

    Article  Google Scholar 

  29. Boushehrian, M.M.; Esmaeili, H.; Foroutan, R.: Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. J Env. Chem. Eng. 8, 103869 (2020). https://doi.org/10.1016/j.jece.2020.103869

    Article  Google Scholar 

  30. Safarzadeh, H.; Peighambardoust, S.J.; Mousavi, S.H.; Foroutan, R.; Mohammadi, R.; Peighambardoust, S.H.: Adsorption ability evaluation of the poly(methacrylic acid-co-acrylamide)/cloisite 30B nanocomposite hydrogel as a new adsorbent for cationic dye removal. Env. Res. 212, 113349 (2022). https://doi.org/10.1016/j.envres.2022.113349

    Article  Google Scholar 

  31. Muntean, S.G.; Nistor, M.A.; Muntean, E.; Todea, A.; Ianos, R.; Pscurariu, C.: Removal of colored organic pollutants from wastewaters by magnetite/carbon nanocomposites: single and binary systems. J. Chem. 2018, 6249821 (2018). https://doi.org/10.1155/2018/6249821

    Article  Google Scholar 

  32. Deng, J.H.; Zhang, X.R.; Zeng, G.M.; Gong, J.L.; Niu, Q.Y.; Liang, J.: Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 226, 189–200 (2013). https://doi.org/10.1016/j.cej.2013.04.045

    Article  Google Scholar 

  33. Tovar-Gómez, R.; Rivera-Ramírez, D.A.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Durán-Valle, C.J.; Montes-Morán, M.A.: Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon. J. Haz. Mat. 199–200, 290–300 (2012). https://doi.org/10.1016/j.jhazmat.2011.11.015

    Article  Google Scholar 

Download references

Funding

This study was supported by Hitit University (Grand Number: MUH19001.21.003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Fındık.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fındık, S. Adsorption of Methyl Violet 2B and Direct Red 28 From Single and Binary Solution Using a Magnetic Zeolite/TiO2/Fe3O4 Nanocomposite. Arab J Sci Eng 48, 16389–16402 (2023). https://doi.org/10.1007/s13369-023-08294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08294-7

Keywords

Navigation