Skip to main content
Log in

Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Zeolites HY and 13X were modified by magnetic nanoparticles and were denoted as MHY and M13X, respectively. MHY and M13X were characterized by vibrating-sample magnetometry, X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, zeta potential, and Brunauer–Emmett–Teller surface area analysis. MHY and M13X were used as adsorbents for the removal of methylene blue (MB) from aqueous solution. Response surface methodology combined with central composite design was used for statistical modelling aimed at the removal process optimization. The effects of the independent variables on the removal process were evaluated, focusing primarily on the solution pH (which was varied in the 3–9 range), temperature (25–55\(\, {^{\circ }}\hbox {C}\)), the adsorbent dose (300–1200 mg/L), and the initial dye concentration (10–40 mg/L). The solution pH and the absorbent dose had the greatest effects on the MB removal rate. The maximum MB removal of 99.85% was achieved using MHY at the optimum conditions (\(\hbox {pH} = 9,\hbox { temperature} = 53.91\,{^{\circ }}\hbox {C}\), initial MB dye concentration \(= 10.23\hbox { mg/L}\), and adsorbent \(\hbox {dose} = 1186\hbox { mg/L}\)), while 95.9% was achieved using M13X at the optimum conditions (\(\hbox {pH} = 8.93,~\hbox { temperature} = 53.39\,{^{\circ }}\hbox {C}\), initial MB concentration \(=10.05\hbox { mg/L}\), and adsorbent \(\hbox {dose} = 1198\hbox { mg/L}\)). The equilibrium data of MB adsorption onto M13X and MHY were studied using the linear and nonlinear form of the Freundlich and Langmuir models, with Langmuir providing a better fit. The obtained kinetic statistics indicated that the adsorption kinetics are more accurately represented by a pseudo-second-order model for both adsorbents. Finally, the calculated thermodynamic parameters indicated that the adsorption is spontaneous and endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prasad, A.L.; Santhi, T.: Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilot leaves as an eco-friendly adsorbent. Sustain. Environ. Res. 22, 113–122 (2012)

    Google Scholar 

  2. Qadri, S.; Ganoe, A.; Haik, Y.: Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J. Hazard Mater. 169, 318–323 (2009)

    Article  Google Scholar 

  3. Qu, S.; Huang, F.; Yu, S.; Chen, G.; Kong, J.: Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe\(_2\)O\(_3\) particles. J. Hazard Mater. 160, 643–647 (2008)

    Article  Google Scholar 

  4. Vargas, A.M.M.; Cazetta, A.L.; Kunita, M.H.; Silva, T.L.; Almeida, V.C.: Adsorption of methylene blue on activated carbon produced from flamboyant pod (Delonix regia): study of adsorption isotherms and kinetic models. Chem. Eng. J. 168, 722–730 (2011)

    Article  Google Scholar 

  5. Zhang, Y.; Shang, J.; Song, Y.; Rong, C.; Wang, Y.; Huang, W.; Yu, K.: Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique. Water Sci. Technol. 75, 659–669 (2017)

    Article  Google Scholar 

  6. Kalyani, K.S.; Balasubramanian, N.; Srinivasakannan, C.: Decolorization and COD reduction of paper industrial effluent using electro-coagulation. Chem. Eng. J. 151, 97–104 (2009)

    Article  Google Scholar 

  7. Morshedi, D.; Mohammadi, Z.; Boojar, M.M.A.; Aliakbari, F.: Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process. Colloids Surf. B Biointerfaces 112, 245–254 (2013)

    Article  Google Scholar 

  8. Alventosa-deLara, E.; Barredo-Damas, S.; Alcaina-Miranda, M.; Iborra-Clar, M.: Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. J. Hazard Mater. 209–210, 492–500 (2012)

    Article  Google Scholar 

  9. Wijannarong, S.; Aroonsrimorakot, S.; Thavipoke, P.; Sangjan, S.: Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Procedia 5, 279–282 (2013)

    Article  Google Scholar 

  10. Ghaedia, M.; Golestani, Nasab A.; Khodadoust, S.; Rajabi, M.; Azizian, S.: Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. J. Ind. Eng. Chem. 20, 2317–2324 (2014)

    Article  Google Scholar 

  11. Hammed, A.K.; Dewayanto, N.; Du, D.; Rahim, Ab; Mohd, H.; Nordin, M.R.: Novel modified ZSM-5 as an efficient adsorbent for methylene blue removal. J. Environ. Chem. Eng. 4, 2607–2616 (2016)

    Article  Google Scholar 

  12. Wang, S.; Ma, Q.; Zhu, Z.H.: Characteristics of coal fly ash and adsorption application. Fuel 87, 3469–3473 (2008)

    Article  Google Scholar 

  13. Wang, S.; Boyjoo, Y.; Choueib, A.; Zhu, Z.H.: Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 39, 129–138 (2005)

    Article  Google Scholar 

  14. Spaldin, N.: Magnetic Materials: Fundamentals and Device Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  15. Cornell, R.M.; Schwertmann, U.: The Iron Oxide: Structure, Properties, Reactions, Occurrences and Uses, 2nd edn. Wiley, Weinheim (2003)

    Book  Google Scholar 

  16. Klabunde, K.J.: Nanoscale Materials in Chemistry, 2nd edn. Wiley, New York (2001)

    Book  Google Scholar 

  17. Zhan, B.-Z.; White, M.A.; Sham, T.-K.; Pincock, J.A.; Doucet, R.J.; Rao, K.V.R.; Robertson, K.N.; Cameron, T.S.: Zeolite-confined nano-RuO\(_2\): a green, selective, and efficient catalyst for aerobic alcohol oxidation. J. Am. Chem. Soc. 125, 2195–2199 (2003)

    Article  Google Scholar 

  18. Schmid, G.: Nanoparticles: From Theory to Application. Wiley, Weinheim (2004)

    Google Scholar 

  19. Mandal, S.; Roy, D.; Chaudhari, R.V.; Sastry, M.: Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions. Chem. Mater. 16, 3714–3724 (2004)

    Article  Google Scholar 

  20. Mehta, D.; Mazumdar, S.; Singh, S.K.: Magnetic adsorbents for the treatment of water/wastewater: a review. J. Water Process. Eng. 7, 244–265 (2015)

    Article  Google Scholar 

  21. Debrassi, A.; Correa, A.F.; Baccarin, T.; Nedelko, N.; Slawska- Waniewska, A.; Sobczak, K.; Dłuzewski, P.; Greneche, J.M.; Rodrigues, C.A.: Removal of cationic dyes from aqueous solutions using N-benzyl-O carboxymethylchitosan magnetic nanoparticles. Chem. Eng. J. 183, 284–293 (2013)

    Article  Google Scholar 

  22. Faraji, M.; Yamini, Y.; Rezaee, M.: Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 7, 1–37 (2010)

    Article  Google Scholar 

  23. Liu, M.; Xi, B.D.; Hou, L.A.; Yu, S.: Magnetic multi-functional nano-fly ash-derived zeolite composites for environmental applications. J. Mater. Chem. A 1, 12617–12626 (2013)

    Article  Google Scholar 

  24. Kumar, D.M.; Pragati, S.: Adsorptive removal of safranin from wastewater using zeolite-iron oxide magnetic nanocomposite. Res. J. Chem. Environ. 21, 25–34 (2017)

    Google Scholar 

  25. Yang, N.; Zhu, S.; Zhang, D.; Xu, S.: Synthesis and properties of magnetic Fe\(_3\)O\(_4\)-activated carbon nanocomposite particles for dye removal. Mater. Lett. 62, 645–647 (2008)

    Article  Google Scholar 

  26. Daham, G.R.; AbdulRazak, A.A.; Hamadi, A.S.; Mohammed, A.A.: Re-refining of used lubricant oil by solvent extraction using central composite design method. Korean J. Chem. Eng. 34, 2435–2444 (2017)

    Article  Google Scholar 

  27. Al-Dahri, T.; AbdulRazak, A.A.; Khalaf, I.H.; Rohani, S.: Response surface modeling of the removal of methyl orange dye from its aqueous solution using two types of zeolite synthesized from coal fly ash. Mater. Express 8, 234–244 (2018)

    Article  Google Scholar 

  28. Lu, H.M.; Zheng, W.T.; Jiang, Q.: Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystal at room temperature. J. Phys. D Appl. Phys. 40, 320–325 (2007)

    Article  Google Scholar 

  29. Occelli, M.L.; Robson, H.: Synthesis of Microporous Materials, 1st edn. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  30. Robson, H.: Verified Synthesis of Zeolitic Materials, vol. 1, 2nd edn. Elsevier, New York (2001)

    Google Scholar 

  31. Zhao, S.Y.; Lee, D.G.; Kim, C.W.; Cha, H.G.; Kim, Y.H.; Kang, Y.S.: Synthesis of magnetic nanoparticles of Fe\(_3\)O\(_4\) and CoFe\(_2\)O\(_4\) and their surface modification by surfactant adsorption. Bull. Korean Chem. Soc. 27, 237–242 (2006)

    Article  Google Scholar 

  32. Faghihian, H.; Moayed, M.; Firooz, A.; Iravani, M.: Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs\(^+\) and Sr\(^{2+}\) from aqueous solution: kinetic, equilibrium, and thermodynamic studies. J. Colloid Interface Sci. 393, 445–451 (2013)

    Article  Google Scholar 

  33. Cullity, B.D.; Stock, S.R.: Elements of X-Rays Diffraction, 2nd edn. Addison-Wesley Publishing Company, Massachusetts (1972)

    Google Scholar 

  34. Kadlik, A.A.; Litvin, Y.A.; Koltashev, V.V.; Kryukova, E.B.; Plotnichenko, V.G.; Tsekhonya, T.I.; Kononkova, N.N.: Solution behavior of reduced N–H–O volatiles in FeO–Na\(_{2}\)O–SiO\(_{2}\)–Al\(_{2}\)O\(_{3}\) melt equilibrated with molten Fe alloy at high pressure and temperature. Phys. Earth Planet. Int. 214, 14–24 (2013)

    Article  Google Scholar 

  35. Nur, H.; Kee, G.L.; Hamdan, H.; Mahlia, T.M.I.; Efendi, J.; Metselaar, H.S.C.: Organosulfonic acid functionalized zeolite ZSM-5 as temperature tolerant proton conducting material. Int. J. Hydrog. Energy 37, 12513–12521 (2012)

    Article  Google Scholar 

  36. Zhou, C.; Alshameri, A.; Yan, C.; Qiu, X.; Wang, H.; Ma, Y.: Characteristics and evaluation of synthetic 13X zeolite from Yunnan’s natural halloysite. J. Porous Mater. 20, 587–594 (2013)

    Article  Google Scholar 

  37. Wu, H.; Zheng, B.; Zheng, X.; Wang, J.; Yuan, W.; Jiang, Z.: Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. J. Power Sources 173, 842–852 (2007)

    Article  Google Scholar 

  38. Singh, K.P.; Gupta, S.; Singh, A.K.; Sinha, S.: Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard Mater. 186, 1462–1473 (2011)

    Article  Google Scholar 

  39. Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J.: Response surfacemodeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard Mater. 171, 551–562 (2009)

    Article  Google Scholar 

  40. Chen, L.; Bai, B.: Equilibrium, kinetic, thermodynamic, and in situ Regeneration studies about methylene blue adsorption by the raspberry-like TiO\(_2\)@yeast microspheres. Ind. Eng. Chem. Res. 52, 15568–15577 (2013)

    Article  Google Scholar 

  41. Rajasimman, M.; Karthic, P.: Application of response surface methodology for the extraction of chromium (VI) by emulsion liquid membrane. J. Taiwan Inst. Chem. E 41, 105–110 (2010)

    Article  Google Scholar 

  42. AbdulRazak, A.A.; Rohani, S.: Sodium dodecyl sulfate-modified Fe\(_2\)O\(_3\)/molecular sieves for removal of rhodamine B dyes. Adv. Mater. Sci. Eng. Vol. 2018, Article ID 3849867 (2018)

  43. Sahu, J.N.; Acharya, J.; Meikap, B.C.: Response surface modeling and optimization of chromium(VI) removal from aqueous solution using tamarind wood activated carbon in batch process. J. Hazard Mater. 172, 818–825 (2009)

    Article  Google Scholar 

  44. AbdulRazak, A.A.; Shakor, Z.M.; Rohani, S.: Optimizing Biebrich scarlet removal from water by magnetic zeolite 13X using response surface method. J. Environ. Chem. Eng, 6, 6175–6183 (2018)

    Article  Google Scholar 

  45. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  46. Freundlich, H.M.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)

    Google Scholar 

  47. Jain, M.; Garg, V.K.; Kadirvelu, K.: Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. J. Environ. Manag. 91, 949–957 (2010)

    Article  Google Scholar 

  48. El-Khaiary, M.I.; Malash, G.F.: Common data analysis errors in batch adsorption studies. Hydrometallurgy 105, 314–320 (2011)

    Article  Google Scholar 

  49. Subramanyam, B.; Das, A.: Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. J. Environ. Health Sci. 12, 92 (2014)

    Article  Google Scholar 

  50. Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L.; Jiang, J.: Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J. Hazard Mater. 198, 282–290 (2011)

    Article  Google Scholar 

  51. Rauf, M.A.; Shehadeh, I.; Ahmed, A.; Al-Zamly, A.: Removal of methylene blue from aqueous solution by using gypsum as a low cost adsorbent. World Acad. Sci. Eng. Technol. 55, 608–613 (2009)

    Google Scholar 

  52. Dhananasekaran, S.; Palanivel, R.; Pappu, S.: Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by \(\alpha \)-chitin nanoparticles. J. Adv. Res. 7, 113–124 (2016)

    Article  Google Scholar 

  53. Lunhong, A.; Zhou, Y.; Jiang, J.: Removal of methylene blue from aqueous solution by montmorillonite/CoFe\(_{2}\)O\(_{4}\) composite with magnetic separation performance. Desalination 266, 72–77 (2011)

    Article  Google Scholar 

  54. Shirani, M.; Semnani, A.; Haddadi, H.; Habibollahi, S.: Optimization of simultaneous removal of methylene blue, crystal violet, and fuchsine from aqueous solutions by magnetic NaY zeolite composite. Water Air Soil Pollut. 225, 2054–2068 (2014)

    Article  Google Scholar 

  55. Zhou, L.; Yu, Q.; Cui, Y.; Xie, F.; Li, W.; Li, Y.; Chen, M.: Sorption properties of activated carbon from reed with a high adsorption capacity. Ecol. Eng. 102, 443–450 (2017)

    Article  Google Scholar 

  56. Lei, C.; Hu, Y.Y.; He, M.Z.: Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites. Chem. Eng. J. 219, 361–370 (2013)

    Article  Google Scholar 

  57. Malash, G.F.; El-Khaiary, M.I.: Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem. Eng. J. 163, 256–263 (2010)

    Article  Google Scholar 

  58. Eftekhari, S.; Habibi-Yangjeh, A.; Sohrabnezhad, S.: Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: thermodynamic and kinetic studies. J. Hazard Mater. 178, 349–355 (2010)

    Article  Google Scholar 

  59. Huang, C.H.; Chang, K.P.; Ou, H.D.; Chiang, Y.C.; Wang, C.F.: Adsorption of cationic dyes onto mesoporous silica. Microporous Mesoporous Mater. 141, 102–109 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The support of Department of Chemical Engineering, University of Technology Baghdad/Iraq is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan A. AbdulRazak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, Z., AbdulRazak, A.A. & Noori, W.A.H. Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal. Arab J Sci Eng 44, 5457–5474 (2019). https://doi.org/10.1007/s13369-019-03788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03788-9

Keywords

Navigation