Skip to main content
Log in

Investigation of GFRP/AA7075-T6 Scarf Joint as a Robot Arm for High Natural Frequency and Damping Ratio

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

One of the most important factors negatively affecting the efficiency of a robot arm is excessive weight. Therefore, the present work is focused on the application of polymer-metal composite instead of monolithic aluminum (Al) beam for high free vibration performance with lightweight. Vibration behavior of the robot arm with a scarf joint configuration is evaluated through the experimental and simulation results. Moreover, mechanical properties and interface morphology of the hybrid beam (HB) are investigated. Scanning electron microscope (SEM) analysis of the fracture surfaces is also performed after the tensile-shear testing. According to the experimental results, it is observed that the natural frequency and damping ratio are improved for the HB compared to the monolithic aluminum by 21.36% and 150%, respectively. Furthermore, the obtained simulation results are in tight agreement with the experimental findings. After the parametric study performed, it is discovered that the ratio of aluminum component in the hybrid robot arm should be 70.45% for the maximum frequency. The physicochemical variation on the metallic adherend after the laser ablation and accordingly the formation of more favorable conditions is proved for the Al-PA66 composite direct bonding. An average failure load of 2844 N is achieved, and it has been realized that the post-tensile fractured surfaces demonstrate a combined failure mode as the cohesive with composite adherend failure. The overall results show that a higher natural frequency and damping ratio, accompanied by favorable mechanical properties, can be achieved for the HB produced through direct bonding in the scarf configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The raw/processed data used herein to justify these findings can be shared upon reasonable request. Interested researchers can directly contact the corresponding author.

References

  1. Krimpenis, A.A.; Papapaschos, V.; Bontarenko, E.: HydraX, a 3D printed robotic arm for hybrid manufacturing. Part I: Custom design manufacturing and assembly. Procedia Manuf. 51, 103–108 (2020). https://doi.org/10.1016/j.promfg.2020.10.016

    Article  Google Scholar 

  2. Yin, H.; Liu, J.; Yang, F.: Hybrid structure design of lightweight robotic arms based on carbon fiber reinforced plastic and aluminum alloy. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2915363

    Article  Google Scholar 

  3. Moazed, R.; Khozeimeh, M.A.; Fotouhi, R.: Simplified approach for parameter selection and analysis of carbon and glass fiber reinforced composite beams. J. Compos. Sci. (2021). https://doi.org/10.3390/jcs5080220

    Article  Google Scholar 

  4. Möhring, H.C.: Composites in production machines. Procedia CIRP (2017). https://doi.org/10.1016/j.procir.2017.04.013

    Article  Google Scholar 

  5. Duraisamy, P.; Kumar Sidharthan, R.; Nagarajan Santhanakrishnan, M.: Design, modeling, and control of biomimetic fish robot: a review. J. Bionic Eng. (2019). https://doi.org/10.1007/s42235-019-0111-7

    Article  Google Scholar 

  6. Che, J.-L.; Kim, J.-H.; Lee, H.-S.; Chang, S.-H.: Application of carbon/epoxy composites to robot console structure for high stiffness with lightweight. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2022.116121

    Article  Google Scholar 

  7. Möhring, H.-C.; Brecher, C.; Abele, E.; Fleischer, J.; Bleicher, F.: Materials in machine tool structures. CIRP Ann. (2015). https://doi.org/10.1016/j.cirp.2015.05.005

    Article  Google Scholar 

  8. Kato, M.; Kono, D.; Kakinuma, Y.: Dynamical characteristic validation of motorized CFRP spindle unit based on receptance coupling. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2022.109028

    Article  Google Scholar 

  9. Liu, X.; Zhu, H.; Xie, Y.; Xu, L.; Lin, N.; Lu, L.: Optimization of microstructural morphology via laser processing to enhance the bond strength of Al-CFRP. J. Reinf. Plast. Compos. (2021). https://doi.org/10.1177/0731684420973066

    Article  Google Scholar 

  10. Min, J.; Wan, H.; Carlson, B.E.; Lin, J.; Sun, C.: Application of laser ablation in adhesive bonding of metallic materials: a review. Opt. Laser Technol. (2020). https://doi.org/10.1016/j.optlastec.2020.106188

    Article  Google Scholar 

  11. Huang, Y.; Gao, X.; Zhang, Y.; Ma, B.: Laser joining technology of polymer-metal hybrid structures—a review. J. Manuf. Process. (2022). https://doi.org/10.1016/j.jmapro.2022.05.026

    Article  Google Scholar 

  12. Dong, H.; Tang, Z.; Li, P.; Wu, B.; Hao, X.; Ma, C.: Friction stir spot welding of 5052 aluminum alloy to carbon fiber reinforced polyether ether ketone composites. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.109495

    Article  Google Scholar 

  13. Jiao, J.; Jia, S.; Xu, Z.; Ye, Y.; Sheng, L.; Zhang, W.: Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method. Compos. B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.106911

    Article  Google Scholar 

  14. Wannapa, N.; Uthaisangsuk, V.: Experimental and numerical failure analyses of dissimilar material joints between aluminium and thermoplastic. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.112762

    Article  Google Scholar 

  15. Huang, H.; Sun, M.; Wei, X.; Sakai, E.; Qiu, J.: Effect of interfacial nanostructures on shear strength of Al-PPS joints fabricated via injection moulding method combined with anodising. Surf. Coat. Technol. (2021). https://doi.org/10.1016/j.surfcoat.2021.127896

    Article  Google Scholar 

  16. Liao, W.; Zhao, S.; Gao, M.: Oscillating laser conduction joining of dissimilar PET to stainless steel. Polymers (2022). https://doi.org/10.3390/polym14224956

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou, Y.; Ning, F.: Joining CFRP/Ti stacks by directed energy deposition: surface topography effects on interface formation and bonding. Compos. B Eng. (2022). https://doi.org/10.1016/j.compositesb.2022.110365

    Article  Google Scholar 

  18. Shiravi, H.; Movahedi, M.; Ozlati, A.: Improving appearance and mechanical strength of aluminum-polypropylene/talc composite friction stir joint using a novel tool design. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/s00170-022-09581-7

    Article  Google Scholar 

  19. Zhang, Y.; Yang, Y.; Hu, J.; Luo, Z.; Bi, J.; Li, Y.; Su, J.: Microstructure and joining mechanism of Al/CFRTP resistance element welded joints. J. Manuf. Process. (2022). https://doi.org/10.1016/j.jmapro.2022.10.014

    Article  Google Scholar 

  20. Ota, H.; Jespersen, K.M.; Saito, K.; Wada, K.; Okamoto, K.; Hosoi, A.; Kawada, H.: Effect of the interfacial nanostructure on the interlaminar fracture toughness and damage mechanisms of directly bonded carbon fiber reinforced thermoplastics and aluminum. Compos. A Appl. Sci. Manuf. (2020). https://doi.org/10.1016/j.compositesa.2020.106101

    Article  Google Scholar 

  21. Abe, H.; Chung, J.C.; Mori, T.; Hosoi, A.; Jespersen, K.M.; Kawada, H.: The effect of nanospike structures on direct bonding strength properties between aluminum and carbon fiber reinforced thermoplastics. Compos. B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.05.025

    Article  Google Scholar 

  22. Iwata, K.; Suzuki, A.; Kim, S.-G.; Takata, N.; Kobashi, M.: Enhancing the solid-state joinability of A5052 and CFRTP via an additively manufactured micro-structure. J. Mater. Process. Technol. (2022). https://doi.org/10.1016/j.jmatprotec.2022.117629

    Article  Google Scholar 

  23. Hernandez, E.; Alfano, M.; Lubineau, G.; Buttner, U.: Improving adhesion of copper/epoxy joints by pulsed laser ablation. Int. J. Adhes. Adhes. (2016). https://doi.org/10.1016/j.ijadhadh.2015.10.003

    Article  Google Scholar 

  24. Wan, H.; Min, J.; Lin, J.: Experimental and theoretical studies on laser treatment strategies for improving shear bonding strength of structural adhesive joints with cast aluminum. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2021.114831

    Article  Google Scholar 

  25. Feng, Z.; Zhao, H.; Tan, C.; Zhu, B.; Xia, F.; Wang, Q.; Chen, B.; Song, X.: Effect of laser texturing on the surface characteristics and bonding property of 30CrMnSiA steel adhesive joints. J. Manuf. Process. (2019). https://doi.org/10.1016/j.jmapro.2019.09.046

    Article  Google Scholar 

  26. Won, S.J.; Kim, H.S.: Effects of laser parameters on morphological change and surface properties of aluminum alloy in masked laser surface texturing. J. Manuf. Process. (2019). https://doi.org/10.1016/j.jmapro.2019.10.034

    Article  Google Scholar 

  27. Darla, V.; Satish Ben, B.; Sai Srinadh, K.; Venkata, R.K.: Evaluation of aluminum to composite bonded lap joints. High Perform. Polym. (2022). https://doi.org/10.1177/09540083221111443

    Article  Google Scholar 

  28. Kanani, A.Y.; Hou, X.; Laidlaw, R.; Ye, J.: The effect of joint configuration on the strength and stress distributions of dissimilar adhesively bonded joints. Eng. Struct. (2021). https://doi.org/10.1016/j.engstruct.2020.111322

    Article  Google Scholar 

  29. Wu, C.; Chen, C.; He, L.; Yan, W.: Comparison on damage tolerance of scarf and stepped-lap bonded composite joints under quasi-static loading. Compos. B Eng. (2018). https://doi.org/10.1016/j.compositesb.2018.08.031

    Article  Google Scholar 

  30. Sawa, T.; Ichikawa, K.; Shin, Y.; Kobayashi, T.: A three-dimensional finite element stress analysis and strength prediction of stepped-lap adhesive joints of dissimilar adherends subjected to bending moments. Int. J. Adhes. Adhes. (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.006

    Article  Google Scholar 

  31. Sarlin, E.; Liu, Y.; Vippola, M.; Zogg, M.; Ermanni, P.; Vuorinen, J.; Lepistö, T.: Vibration damping properties of steel/rubber/composite hybrid structures. Compos. Struct. (2012). https://doi.org/10.1016/j.compstruct.2012.04.035

    Article  Google Scholar 

  32. García-Barruetabeña, J.; Cortés, F.: Finite elements analysis of the vibrational response of an adhesively bonded beam. Eng. Struct. (2018). https://doi.org/10.1016/j.engstruct.2018.04.092

    Article  Google Scholar 

  33. ASTM International D618-21: Standard Practice for Conditioning Plastics for Testing: ASTM International, West Conshohocken (2021)

  34. ASTM International. D5868-01: Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding. ASTM International, West Conshohocken (2014)

  35. Maressa, P.; Anodio, L.; Bernasconi, A.; Demir, A.G.; Previtali, B.: Effect of surface texture on the adhesion performance of laser treated Ti6Al4V alloy. J. Adhes. (2015). https://doi.org/10.1080/00218464.2014.933809

    Article  Google Scholar 

  36. Wang, Y.; Zhang, M.; Yin, J.; Dong, Y.; Zhao, J.; Zhang, X.; Lin, B.: Effect of ultrasonic vibration-assisted laser treatment on surface roughness and wettability of aluminum. Opt. Laser Technol. (2022). https://doi.org/10.1016/j.optlastec.2022.107969

    Article  Google Scholar 

  37. Hirchenhahn, P.; Al-Sayyad, A.; Bardon, J.; Plapper, P.; Houssiau, L.: Binding mechanisms between laser-welded polyamide-6.6 and native aluminum oxide. ACS Omega 6, 33482–33497 (2021). https://doi.org/10.1021/acsomega.1c04264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, F.C.; Dong, P.; Lu, W.; Sun, K.: On formation of Al–O–C bonds at aluminum/polyamide joint interface. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2018.10.024

    Article  Google Scholar 

  39. Jung, D.-J.; Cheon, J.; Na, S.-J.: Effect of surface pre-oxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel. Mater. Des. (2016). https://doi.org/10.1016/j.matdes.2016.03.044

    Article  Google Scholar 

  40. Wu, Y.; Lin, J.; Carlson, B.E.; Lu, P.; Balogh, M.P.; Irish, N.P.; Mei, Y.: Effect of laser ablation surface treatment on performance of adhesive-bonded aluminum alloys. Surf. Coat. Technol. (2016). https://doi.org/10.1016/j.surfcoat.2016.04.051

    Article  Google Scholar 

  41. Chen, T.; Liu, S.Y.; Xie, Q.; Detavernier, C.; Van Meirhaeghe, R.L.; Qu, X.-P.: The effects of deposition temperature and ambient on the physical and electrical performance of DC-sputtered n-ZnO/p-Si heterojunction. Appl. Phys. A (2010). https://doi.org/10.1007/s00339-009-5386-9

    Article  Google Scholar 

  42. Xu, D.; Fan, D.; Shen, W.: Catalyst-free direct vapor-phase growth of Zn1xCuxO micro-cross structures and their optical properties. Nanoscale Res. Lett. (2013). https://doi.org/10.1186/1556-276X-8-46

    Article  PubMed  PubMed Central  Google Scholar 

  43. Andarabi, A.A.; Shelesh-Nezhad, K.; Chakherlou, T.N.: The effect of laser-texturing configurations on the interfacial resistance of carbon reinforced aluminium laminate. Compos. Interfaces (2023). https://doi.org/10.1080/09276440.2022.2120731

    Article  Google Scholar 

  44. Chawla, K.K.: Composite Materials: Science and technology. Springer, New York (2013) https://doi.org/10.1007/978-1-4757-2966-5

    Book  Google Scholar 

  45. Mukbaniani, O.V.; Abadie, M.J.M.; Tatrishvili, T.: High-Performance Polymers for Engineering-Based Composites. Apple Academic Press, New York (2015) https://doi.org/10.1201/b19869

    Book  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökçe Mehmet Gençer.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gençer, G.M., Öztoprak, N., Akdağ, M. et al. Investigation of GFRP/AA7075-T6 Scarf Joint as a Robot Arm for High Natural Frequency and Damping Ratio. Arab J Sci Eng 49, 2027–2044 (2024). https://doi.org/10.1007/s13369-023-08093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08093-0

Keywords

Navigation