Skip to main content

Advertisement

Log in

A Comprehensive Review on Friction Stir Welding of High-Density Polyethylene

  • Review Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A relatively new technique, friction stir welding (FSW), that works on the solid-state joining principle has shown significant development in recent years. This technique is based on the generation of thermal energy necessary to form the joint through the friction and material deformation caused by a non-consumable tool plunging into the workpiece. The FSW has previously been used for welding metallic materials such as aluminum and its alloys that were difficult to join using conventional methods. However, instead of the use of heavier metals in the automotive, aviation, and many other engineering industries, the preference for lightweight materials such as polymer materials due to their specific strength, corrosion resistance, high degree of processing, and design freedom as well as their lightness, has resulted in the emergence of the need for new techniques for joining these materials. The FSW technique has attracted great attention because of less material waste, less energy requirement, less distortion, and residual stresses. It is an environmentally friendly and economical method, unlike fusion welding techniques. Although significant progress has been made in this method, which has great potential in polymer welding applications, difficulties remain in welding high-density polyethylene (HDPE) with the FSW, which has a growing demand in many industrial applications. In addition, the limited number, as well as shallow of compiled studies on this subject in the literature, encouraged us to carry out this study. This review summarizes the results from previous studies focusing on the weldability of HDPE materials using the FSW technique. Furthermore, in this article, the operation of the process, its history, advantages, and limitations compared to other methods, materials that have hitherto been welded with it, its critical parameters that affect the mechanical properties of the welded joint, and the methods used for the characterization of the structure after the process, are reviewed. Finally, it is aimed to better understand the joining process and to shed light for researchers in future works on welding HDPE material with the FSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pramanik, P.K.D., Mukherjee, B., Pal, S., Upadhyaya, B.K., Dutta, S.: Ubiquitous manufacturing in the age of industry 4.0: A state-of-the-art primer. A Roadmap to Ind. 4.0 Smart Prod. Sharp Bus. Sustain. Dev. 73–112 (2020). https://doi.org/10.1007/978-3-030-14544-6_5

  2. Blawert, C.; Hort, N.; Kainer, K.U.: Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met. 57, 397–408 (2004)

    Google Scholar 

  3. Cole, G.S.; Sherman, A.M.: Lightweight materials for automotive applications. Mater. Charact. 35, 3–9 (1995). https://doi.org/10.1016/1044-5803(95)00063-1

    Article  Google Scholar 

  4. Mishra, R.S.; Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50, 1–78 (2005). https://doi.org/10.1016/J.MSER.2005.07.001

    Article  Google Scholar 

  5. Rodrigues, D.M.; Leitão, C.; Louro, R.; Gouveia, H.; Loureiro, A.: High speed friction stir welding of aluminum alloys. Sci. Technol. Weld. Join. 15, 676–681 (2013). https://doi.org/10.1179/136217110X12785889550181

    Article  Google Scholar 

  6. Gibson, B.T.; Lammlein, D.H.; Prater, T.J.; Longhurst, W.R.; Cox, C.D.; Ballun, M.C.; Dharmaraj, K.J.; Cook, G.E.; Strauss, A.M.: Friction stir welding: process, automation, and control. J. Manuf. Process. 16, 56–73 (2014). https://doi.org/10.1016/J.JMAPRO.2013.04.002

    Article  Google Scholar 

  7. Shete, M.T.; Yarasu, R.B.: Current advancements in friction stir welding of high density materials: a review. Mater. Today Proc. 47, 2984–2989 (2021). https://doi.org/10.1016/J.MATPR.2021.05.218

    Article  Google Scholar 

  8. Benyerou, D.; Khellafi, H.; Meddah, H.M.; Benhamena, A.; Hachelaf, K.; Lounis, A.: Parametric study of friction stir spot welding (FSSW) for polymer materials case of high density polyethylene sheets: experimental and numerical study. Frat. ed Integrità Strutt. 55, 145–158 (2021). https://doi.org/10.3221/IGF-ESIS.55.11

    Article  Google Scholar 

  9. Sahu, S.K., Mishra, D., Mahto, R.P., Pal, S.K., Pal, K.: Friction stir welding of HDPE sheets: A study on the effect of rotational speed. In: 6th international and 27th all India manufacturing technology, design and research conference (AIMTDR-2016). pp. 1065–1068. , Pune, Maharashtra, INDIA (2016)

  10. Singh, S.; Singh, G.; Prakash, C.; Kumar, R.: On the mechanical characteristics of friction stir welded dissimilar polymers: statistical analysis of the processing parameters and morphological investigations of the weld joint. J. Braz. Soc. Mech. Sci. Eng. 42, 1–12 (2020). https://doi.org/10.1007/S40430-020-2227-4/FIGURES/8

    Article  Google Scholar 

  11. Raouache, E.; Boumerzoug, Z.; Rajakumar, S.; Khalfallah, F.: Effect of FSW process parameters on strength and peak temperature for joining high-density polyethylene (HDPE) sheets. Rev. Des Compos. Des Mater. Av. 28, 149–160 (2018). https://doi.org/10.3166/rcma.28.149-160

    Article  Google Scholar 

  12. Bozkurt, Y.: The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater. Des. 35, 440–445 (2012). https://doi.org/10.1016/J.MATDES.2011.09.008

    Article  Google Scholar 

  13. Amancio-Filho, S.T.; Dos Santos, J.F.: Joining of polymers and polymer–metal hybrid structures: recent developments and trends. Polym. Eng. Sci. 49, 1461–1476 (2009). https://doi.org/10.1002/PEN.21424

    Article  Google Scholar 

  14. Benhamena, A.; Bouiadjra, B.B.; Amrouche, A.; Mesmacque, G.; Benseddiq, N.; Benguediab, M.: Three finite element analysis of semi-elliptical crack in high density poly-ethylene pipe subjected to internal pressure. Mater. Des. 31, 3038–3043 (2010). https://doi.org/10.1016/J.MATDES.2010.01.029

    Article  Google Scholar 

  15. Shaikh, A.S., Tahir, M.S., Qureshi, M.K.A.: Experimental investigation of mechanical properties of friction stir welded HDPE with additions of silicon carbide, silica, nano-alumina, and graphite. In: Joining of advanced and specialty materials (JASM XIV). pp 316–323. , Pittsburgh, Pennsylvania (2012)

  16. Aydin, M.: Effects of welding parameters and pre-heating on the friction stir welding of UHMW-polyethylene. Polym. Plast. Technol. Eng. 49, 595–601 (2010). https://doi.org/10.1080/03602551003664503

    Article  Google Scholar 

  17. Abdallah, L.; Chikh, E.B.O.; Meddah, H.M.; Larbi, G.; Kaddour, H.: Parametric study of the mechanical behavior of FSSW welded polymer plates using a new form of welding tool. Defect Diffus. Forum. 389, 205–215 (2018). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/DDF.389.205

    Article  Google Scholar 

  18. Peacock, A.: Handbook of polyethylene: structures: properties, and applications. CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  19. Crawford, R.J.; Tam, Y.: Friction welding of plastics. J. Mater. Sci. 16, 3275–3282 (1981). https://doi.org/10.1007/BF00586287

    Article  Google Scholar 

  20. Patham, B.; Foss, P.H.: Estimation of melt film variables during the steady-state penetration phase of thermoplastic vibration welding using a generalized Newtonian fluid model. Polym. Eng. Sci. 52, 581–597 (2012). https://doi.org/10.1002/PEN.22121

    Article  Google Scholar 

  21. Deepthi, M.V.; Sharma, M.; Sailaja, R.R.N.; Anantha, P.; Sampathkumaran, P.; Seetharamu, S.: Mechanical and thermal characteristics of high density polyethylene–fly ash Cenospheres composites. Mater. Des. 31, 2051–2060 (2010). https://doi.org/10.1016/J.MATDES.2009.10.014

    Article  Google Scholar 

  22. Younesi, M.; Bahrololoom, M.E.: Effect of temperature and pressure of hot pressing on the mechanical properties of PP–HA bio-composites. Mater. Des. 30, 3482–3488 (2009). https://doi.org/10.1016/J.MATDES.2009.03.011

    Article  Google Scholar 

  23. Mourad, A.H.I.: Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater. Des. 31, 918–929 (2010). https://doi.org/10.1016/J.MATDES.2009.07.031

    Article  Google Scholar 

  24. Mimaroglu, A.; Yenihayat, O.F.; Celebi, A.: The influence of thermal history, strain rate and sample geometry on the deformation behavior of polymers: use of the thermovision technique. Mater. Des. 16, 199–203 (1995). https://doi.org/10.1016/0261-3069(95)00037-2

    Article  Google Scholar 

  25. Miloud, M.H.; El Bahri, O.C.; Abdellah, L.: Mechanical behavior analysis of a friction stir welding (FSW) for welded joint applied to polymer materials. Frat. ed Integrità Strutt. 13, 459–467 (2019). https://doi.org/10.3221/IGF-ESIS.47.36

    Article  Google Scholar 

  26. Bilici, M.K.; Yukler, A.I.: Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Mater. Des. 33, 145–152 (2012). https://doi.org/10.1016/J.MATDES.2011.06.059

    Article  Google Scholar 

  27. Matsuyama, K.: Trend of automobile vehicles and the joining technologies. Weld. World. 51, 50–60 (2013). https://doi.org/10.1007/BF03266560

    Article  Google Scholar 

  28. Efe, A., Isik, A.: A general view of industry 4.0 revolution from cybersecurity perspective. Int. J. Intell. Syst. Appl. Eng. 8, 11–20 (2020). https://doi.org/10.18201/IJISAE.2020158884

  29. Takhakh, A.M., Hussein, H.K.: Experimental investigation and parametric optimization of FSW for the 2024-O aluminum alloy joints. IOP Conf. Ser. Mater. Sci. Eng. 1094, 012134 (2020). https://doi.org/10.1088/1757-899X/1094/1/012134

  30. Strand, S.: Joining plastics - Can friction stir welding compete? In: Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference. pp. 321–326. , Indianapolis, IN, USA (2003)

  31. Hussein, S.A.; Tahir, A.S.M.; Hadzley, A.B.: Characteristics of aluminum-to-steel joint made by friction stir welding: a review. Mater. Today Commun. 5, 32–49 (2015). https://doi.org/10.1016/J.MTCOMM.2015.09.004

    Article  Google Scholar 

  32. Mehta, K.P., Vilaça, P.: A review on friction stir-based channeling. Crit. Rev. Solid State Mater. Sci. 1–45 (2021). https://doi.org/10.1080/10408436.2021.1886042

  33. Rizlan, M.Z.; Abdullah, A.B.; Hussain, Z.: A comprehensive review on pre- and post-forming evaluation of aluminum to steel blanks via friction stir welding. Int. J. Adv. Manuf. Technol. 114, 1871–1892 (2021). https://doi.org/10.1007/S00170-021-06963-1/FIGURES/10

    Article  Google Scholar 

  34. Thomas, W.M.; Nicholas, E.D.: Friction stir welding for the transportation industries. Mater. Des. 18, 269–273 (1997). https://doi.org/10.1016/S0261-3069(97)00062-9

    Article  Google Scholar 

  35. Abdulkadhum, H.H., Abdul-Khider, S., Hamza, S.A.: Mechanical behavior of friction stir welded high-density polyethylene sheets. In: IOP Conference Series: Materials Science and Engineering. p. 012030. IOP Publishing (2020)

  36. Gandra, J.; Krohn, H.; Miranda, R.M.; Vilaça, P.; Quintino, L.; Dos Santos, J.F.: Friction surfacing—a review. J. Mater. Process. Technol. 214, 1062–1093 (2014). https://doi.org/10.1016/J.JMATPROTEC.2013.12.008

    Article  Google Scholar 

  37. Vilaça, P.; Thomas, W.: Friction stir welding technology. Springer, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  38. Ambroziak, A.; Korzeniowski, M.; Kustroń, P.; Winnicki, M.; Sokołowski, P.; Harapińska, E.: Friction welding of aluminum and aluminum alloys with steel. Adv. Mater. Sci. Eng. 2014, 1–15 (2014). https://doi.org/10.1155/2014/981653

    Article  Google Scholar 

  39. Mehta, K.P.; Badheka, V.J.: A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater. Manuf. Process. 31, 233–254 (2015). https://doi.org/10.1080/10426914.2015.1025971

    Article  Google Scholar 

  40. Mehta, K.P.: A review on friction-based joining of dissimilar aluminum–steel joints. J. Mater. Res. 34, 78–96 (2019). https://doi.org/10.1557/JMR.2018.332

    Article  Google Scholar 

  41. Gullino, A., Matteis, P., Aiuto, F.D.: Review of aluminum-to-steel welding technologies for car-body applications. Metals (Basel). 9, 315 (2019). https://doi.org/10.3390/MET9030315

  42. Wan, L.; Huang, Y.: Friction stir welding of dissimilar aluminum alloys and steels: a review. Int. J. Adv. Manuf. Technol. 99, 1781–1811 (2018). https://doi.org/10.1007/S00170-018-2601-X

    Article  Google Scholar 

  43. Bindal, T.; Saxena, R.K.; Pandey, S.: Investigating friction spin welding of thermoplastics in shear joint configuration. SN Appl. Sci. 3, 1–17 (2021). https://doi.org/10.1007/S42452-021-04217-Z/FIGURES/17

    Article  Google Scholar 

  44. Thomas, W.M.: Friction stir butt welding, International Patent Application No. PCT/GB92, (1991)

  45. Payganeh, G.H.; Arab, N.B.M.; Asl, Y.D.; Ghasemi, F.A.; Boroujeni, M.S.: Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. Int. J. Phys. Sci. 6, 4595–4601 (2011). https://doi.org/10.5897/IJPS11.866

    Article  Google Scholar 

  46. Mosavvar, A.; Azdast, T.; Moradian, M.; Hasanzadeh, R.: Tensile properties of friction stir welding of thermoplastic pipes based on a novel designed mechanism. Weld. World. 63, 691–699 (2019). https://doi.org/10.1007/S40194-018-00698-6/TABLES/5

    Article  Google Scholar 

  47. Xunhong, W.; Kuaishe, W.: Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy. Mater. Sci. Eng. A. 431, 114–117 (2006). https://doi.org/10.1016/J.MSEA.2006.05.128

    Article  Google Scholar 

  48. Nandan, R.; DebRoy, T.; Bhadeshia, H.K.D.H.: Recent advances in friction-stir welding: process, weldment structure and properties. Prog. Mater. Sci. 53, 980–1023 (2008). https://doi.org/10.1016/J.PMATSCI.2008.05.001

    Article  Google Scholar 

  49. Elangovan, K.; Balasubramanian, V.: Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminum alloy. J. Mater. Process. Technol. 200, 163–175 (2008). https://doi.org/10.1016/J.JMATPROTEC.2007.09.019

    Article  Google Scholar 

  50. Lee, W.B.; Yeon, Y.M.; Jung, S.B.: Joint properties of friction stir welded AZ31B– H24 magnesium alloy. Mater. Sci. Technol. 19, 785–790 (2013). https://doi.org/10.1179/026708303225001867

    Article  Google Scholar 

  51. Amirizad, M.; Kokabi, A.H.; Gharacheh, M.A.; Sarrafi, R.; Shalchi, B.; Azizieh, M.: Evaluation of microstructure and mechanical properties in friction stir welded A356 + 15%SiCp cast composite. Mater. Lett. 60, 565–568 (2006). https://doi.org/10.1016/J.MATLET.2005.09.035

    Article  Google Scholar 

  52. Boz, M.; Kurt, A.: The influence of stirrer geometry on bonding and mechanical properties in friction stir welding process. Mater. Des. 25, 343–347 (2004). https://doi.org/10.1016/J.MATDES.2003.11.005

    Article  Google Scholar 

  53. Bang, H.S.; Hong, S.M.; Das, A.; Bang, H.S.: Study on the weldability and mechanical characteristics of dissimilar materials (Al5052-DP590) by TIG assisted hybrid friction stir welding. Met. Mater. Int. 27, 1193–1204 (2019). https://doi.org/10.1007/S12540-019-00461-6/FIGURES/11

    Article  Google Scholar 

  54. Ashong, A.N.; Lee, M.; Hong, S.T.; Lee, Y.S.; Kim, J.H.: Refill friction stir spot welding of dissimilar AA6014 Al alloy and carbon-fiber-reinforced polymer composite. Met. Mater. Int. 27, 639–649 (2021). https://doi.org/10.1007/S12540-020-00788-5/FIGURES/6

    Article  Google Scholar 

  55. Zhang, Y.N.; Cao, X.; Larose, S.; Wanjara, P.: Review of tools for friction stir welding and processing. Can. Metall. Q. 51, 250–261 (2013). https://doi.org/10.1179/1879139512Y.0000000015

    Article  Google Scholar 

  56. Ullegaddi, K.; Murthy, V.; Harsha, R.N.: Friction stir welding tool design and their effect on welding of AA-6082 T6. Mater. Today Proc. 4, 7962–7970 (2017). https://doi.org/10.1016/J.MATPR.2017.07.133

    Article  Google Scholar 

  57. Peel, M.; Steuwer, A.; Preuss, M.; Withers, P.J.: Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds. Acta Mater. 51, 4791–4801 (2003). https://doi.org/10.1016/S1359-6454(03)00319-7

    Article  Google Scholar 

  58. Gerlich, A.; Su, P.; North, T.H.: Peak temperatures and microstructures in aluminum and magnesium alloy friction stir spot welds. Sci. Technol. Weld. Join. 10, 647–652 (2013). https://doi.org/10.1179/174329305X48383

    Article  Google Scholar 

  59. Yang, Q.; Mironov, S.; Sato, Y.S.; Okamoto, K.: Material flow during friction stir spot welding. Mater. Sci. Eng. A. 527, 4389–4398 (2010). https://doi.org/10.1016/J.MSEA.2010.03.082

    Article  Google Scholar 

  60. Dawes, C.J.; Thomas, W.M.: Friction stir process welds aluminum alloys: The process produces low-distortion, high-quality, low-cost welds on aluminum. Weld. J. 75, 41–45 (1996)

    Google Scholar 

  61. Cho, J.H.; Boyce, D.E.; Dawson, P.R.: Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Mater. Sci. Eng. A. 398, 146–163 (2005). https://doi.org/10.1016/J.MSEA.2005.03.002

    Article  Google Scholar 

  62. Sunil, B.R.: Surface Engineering by Friction-Assisted Processes: Methods, Materials, and Applications. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  63. Iftikhar, S.H., Mourad, A.H.I., Sheikh-Ahmad, J.: An overview of friction stir welding of high-density polyethylene. In: 2020 Advances in Science and Engineering Technology International Conferences (ASET). pp. 1–6. , Dubai, UAE (2020)

  64. Pirizadeh, M.; Azdast, T.; Rash Ahmadi, S.; Shishavan, S.M.; Bagheri, A.: Friction stir welding of thermoplastics using a newly designed tool. Mater. Des. 54, 342–347 (2014). https://doi.org/10.1016/J.MATDES.2013.08.053

    Article  Google Scholar 

  65. Panneerselvam, K.; Lenin, K.: Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Mater. Des. 53, 302–307 (2014). https://doi.org/10.1016/J.MATDES.2013.07.017

    Article  Google Scholar 

  66. Ahmadi, H.; Arab, N.B.M.; Ghasemi, F.A.: Optimization of process parameters for friction stir lap welding of carbon fiber reinforced thermoplastic composites by Taguchi method. J. Mech. Sci. Technol. 28, 279–284 (2014). https://doi.org/10.1007/s12206-013-0966-1

    Article  Google Scholar 

  67. Arici, A.; Mert, Ş: Friction stir spot welding of polypropylene. J. Reinf. Plast. Compos. 27, 2001–2004 (2008). https://doi.org/10.1177/0731684408089134

    Article  Google Scholar 

  68. Esteves, J.V.; Goushegir, S.M.; Dos Santos, J.F.; Canto, L.B.; Hage, E.; Amancio-Filho, S.T.: Friction spot joining of aluminum AA6181-T4 and carbon fiber-reinforced poly (phenylene sulfide): effects of process parameters on the microstructure and mechanical strength. Mater. Des. 66, 437–445 (2015). https://doi.org/10.1016/J.MATDES.2014.06.070

    Article  Google Scholar 

  69. Arici, A.; Selale, S.: Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Sci. Technol. Weld. Join. 12, 536–539 (2013). https://doi.org/10.1179/174329307X173706

    Article  Google Scholar 

  70. Rezgui, M.A., Ayadi, M., Cherouat, A., Hamrouni, K., Zghal, A., Bejaoui, S.: Application of Taguchi approach to optimize friction stir welding parameters of polyethylene. In: EPJ Web of Conferences. p. 07003. EDP Sciences (2010)

  71. Hoseinlaghab, S.; Mirjavadi, S.S.; Sadeghian, N.; Jalili, I.; Azarbarmas, M.; Givi, M.K.B.: Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Mater. Des. 67, 369–378 (2015). https://doi.org/10.1016/J.MATDES.2014.11.039

    Article  Google Scholar 

  72. Vijay, S.J., Murugan, N.: Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10 wt.% TiB2 metal matrix composite. Mater. Des. 31, 3585–3589 (2010). https://doi.org/10.1016/J.MATDES.2010.01.018

  73. Addison, A.C., Robelou, A.J.: Friction stir spot welding: principal parameters and their effects. In: Proceedings of the 5th International Friction Stir Welding Symposium. pp. 14–16. TWI Ltd., Metz, France (2004)

  74. Chen, Y.; Liu, H.; Feng, J.: Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Mater. Sci. Eng. A. 420, 21–25 (2006). https://doi.org/10.1016/J.MSEA.2006.01.029

    Article  Google Scholar 

  75. Chionopoulos, S.K., Sarafoglou, C.H.I., Pantelis, D.I., Papazoglou, V.J.: Effect of tool pin and welding parameters on friction stir welded (FSW) marine aluminum alloys. In: In Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN). pp. 1–3. , Greece (2008)

  76. Kiss, Z.; Czigány, T.: Applicability of friction stir welding in polymeric materials. Period. Polytech. Mech. Eng. 51, 15–18 (2007). https://doi.org/10.3311/PP.ME.2007-1.02

    Article  Google Scholar 

  77. Jana, S.; Hovanski, Y.; Grant, G.J.: Friction stir lap welding of magnesium alloy to steel: a preliminary investigation. Metall. Mater. Trans. A. 41, 3173–3182 (2010). https://doi.org/10.1007/S11661-010-0399-8/FIGURES/11

    Article  Google Scholar 

  78. Bevilacqua, M.; Ciarapica, F.E.; D’Orazio, A.; Forcellese, A.; Simoncini, M.: Sustainability analysis of friction stir welding of AA5754 sheets. Procedia CIRP. 62, 529–534 (2017). https://doi.org/10.1016/J.PROCIR.2016.06.081

    Article  Google Scholar 

  79. Prabu, S.M.; Madhu, H.C.; Perugu, C.S.; Akash, K.; Kumar, P.A.; Kailas, S.V.; Anbarasu, M.; Palani, I.A.: Microstructure, mechanical properties and shape memory behavior of friction stir welded nitinol. Mater. Sci. Eng. A. 693, 233–236 (2017). https://doi.org/10.1016/J.MSEA.2017.03.101

    Article  Google Scholar 

  80. Pourali, M.; Abdollah-Zadeh, A.; Saeid, T.; Kargar, F.: Influence of welding parameters on intermetallic compounds formation in dissimilar steel/aluminum friction stir welds. J. Alloys Compd. 715, 1–8 (2017). https://doi.org/10.1016/J.JALLCOM.2017.04.272

    Article  Google Scholar 

  81. Sudhagar, S.; Sakthivel, M.; Mathew, P.J.; Daniel, S.A.A.: A multi criteria decision making approach for process improvement in friction stir welding of aluminum alloy. Measurement 108, 1–8 (2017). https://doi.org/10.1016/J.MEASUREMENT.2017.05.023

    Article  Google Scholar 

  82. Khan, N.Z.; Khan, Z.A.; Siddiquee, A.N.; Al-Ahmari, A.M.; Abidi, M.H.: Analysis of defects in clean fabrication process of friction stir welding. Trans. Nonferrous Met. Soc. China. 27, 1507–1516 (2017). https://doi.org/10.1016/S1003-6326(17)60171-7

    Article  Google Scholar 

  83. Niu, P.; Li, W.; Zhang, Z.; Yang, X.: Global and local constitutive behaviors of friction stir welded AA2024 joints. J. Mater. Sci. Technol. 33, 987–990 (2017). https://doi.org/10.1016/J.JMST.2017.02.010

    Article  Google Scholar 

  84. Noh, S.; Ando, M.; Tanigawa, H.; Fujii, H.; Kimura, A.: Friction stir welding of F82H steel for fusion applications. J. Nucl. Mater. 478, 1–6 (2016). https://doi.org/10.1016/J.JNUCMAT.2016.05.028

    Article  Google Scholar 

  85. Eslami, S.; Tavares, P.J.; Moreira, P.M.G.P.: Fatigue life assessment of friction stir welded dissimilar polymers. Procedia Struct. Integr. 5, 1433–1438 (2017). https://doi.org/10.1016/J.PROSTR.2017.07.208

    Article  Google Scholar 

  86. Kalvala, P.R.; Akram, J.; Misra, M.; Ramachandran, D.; Gabbita, J.R.: Low temperature friction stir welding of P91 steel. Def. Technol. 12, 285–289 (2016). https://doi.org/10.1016/J.DT.2015.11.003

    Article  Google Scholar 

  87. Leal, R.M.; Leitão, C.; Loureiro, A.; Rodrigues, D.M.; Vilaça, P.: Material flow in heterogeneous friction stir welding of thin aluminum sheets: effect of shoulder geometry. Mater. Sci. Eng. A. 498, 384–391 (2008). https://doi.org/10.1016/J.MSEA.2008.08.018

    Article  Google Scholar 

  88. Çam, G.: Friction stir welded structural materials: beyond Al-alloys. Int. Mater. Rev. 56, 1–48 (2011)

    Article  Google Scholar 

  89. Meilinger, Á.; Török, I.: The importance of friction stir welding tool. Prod. Process. Syst. 6, 25–34 (2013)

    Google Scholar 

  90. Pasha, A.; Reddy, R.P.; Laxminarayana, P.; Khan, I.A.: Influence of process and tool parameters on friction stir welding–over view. Int. J. Appl. Eng. Technol. 4, 54–69 (2014)

    Google Scholar 

  91. Johnson, R.: Friction stir welding of magnesium alloys. Mater. Sci. Forum. 419, 365–370 (2003). https://doi.org/10.4028/www.scientific.net/MSF.419-422.365

    Article  Google Scholar 

  92. Mehta, M.; Arora, A.; De, A.; Debroy, T.: Tool geometry for friction stir welding-optimum shoulder diameter. Metall. Mater. Trans. A. 42, 2716–2722 (2011). https://doi.org/10.1007/s11661-011-0672-5

    Article  Google Scholar 

  93. Elangovan, K.; Balasubramanian, V.; Babu, S.: Developing an empirical relationship to predict tensile strength of friction stir welded AA2219 aluminum alloy. J. Mater. Eng. Perform. 17, 820–830 (2008). https://doi.org/10.1007/S11665-008-9240-6/FIGURES/5

    Article  Google Scholar 

  94. Mishra, D., Sahu, S.K., Mahto, R.P., Pal, S.K., Pal, K.: Friction stir welding for joining of polymers. Strength. Join. Plast. Deform. 123–162 (2019). https://doi.org/10.1007/978-981-13-0378-4_6

  95. Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cao, X.: Tensile properties of a friction stir welded magnesium alloy: effect of pin tool thread orientation and weld pitch. Mater. Sci. Eng. A. 527, 6064–6075 (2010). https://doi.org/10.1016/J.MSEA.2010.06.012

    Article  Google Scholar 

  96. Sun, N.; Yin, Y.H.; Gerlich, A.P.; North, T.H.: Tool design and stir zone grain size in AZ31 friction stir spot welds. Sci. Technol. Weld. Join. 14, 747–752 (2013). https://doi.org/10.1179/136217109X12518083193559

    Article  Google Scholar 

  97. Jin-Yih, K.; Chun-Yao, H.; Chung-Chen, T.: Experimental study of inverted drilling Al-7075 alloy. Int. J. Adv. Manuf. Technol. 102, 3519–3529 (2019). https://doi.org/10.1007/s00170-019-03416-8

    Article  Google Scholar 

  98. Xu, J., Ji, M., Davim, J.P., Chen, M., El Mansori, M., Krishnaraj, V.: Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Compos. Struct. 234, 111727 (2020). https://doi.org/10.1016/J.COMPSTRUCT.2019.111727

  99. Masooth, P.H.S.; Jayakumar, V.: Experimental investigation on surface finish of drilled hole by TiAlN, TiN, AlCrN coated HSS drill under dry conditions. Mater. Today Proc. 22, 315–321 (2020). https://doi.org/10.1016/J.MATPR.2019.05.293

    Article  Google Scholar 

  100. Piri, M., Hashemolhosseini, H., Mikaeil, R., Ataei, M., Baghbanan, A.: Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock. Int. J. Refract. Met. Hard Mater. 87, 105113 (2020). https://doi.org/10.1016/J.IJRMHM.2019.105113

  101. Thomas, W.M.; Staines, D.G.; Norris, I.M.; De Frias, R.: Friction stir welding tools and developments. Weld. World. 47, 10–17 (2013). https://doi.org/10.1007/BF03266403

    Article  Google Scholar 

  102. Hirasawa, S.; Badarinarayan, H.; Okamoto, K.; Tomimura, T.; Kawanami, T.: Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Process. Technol. 210, 1455–1463 (2010). https://doi.org/10.1016/J.JMATPROTEC.2010.04.003

    Article  Google Scholar 

  103. Dialami, N., Cervera, M., Chiumenti, M.: Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. Metals (Basel). 9, 28 (2019). https://doi.org/10.3390/MET9010028

  104. Sorensen C. D.: Innovative technology applications in FSW of high softening temperature materials. In: Proc. 5th Int. FSW Symp. , Metz, France (2004)

  105. Lumsden, J., Pollock, G., Mahoney, M.: Effect of tool design on stress corrosion resistance of FSW AA 7050-T 7451. In: Friction stir welding and processing III, TMS Annual Meeting. pp. 19–25. Shaping and Forming Committee of the Materials Processing and Manufacturing Division (MPMD) of TMS (The Minerals, Metals & Materials Society), San Francisco, California (2005)

  106. Mahakur, V.K.; Gouda, K.; Patowari, P.K.; Bhowmik, S.: A review on advancement in friction stir welding considering the tool and material parameters. Arab. J. Sci. Eng. 46, 7681–7697 (2021). https://doi.org/10.1007/S13369-021-05524-8/FIGURES/1

    Article  Google Scholar 

  107. Colligan, K.J., Xu, J., Pickens, J.R.: Welding tool and process parameter effects in friction stir welding of aluminum alloys. In: Friction Stir Welding and Processing II, TMS Annual Meeting. p. 181. , San Diego, California (2003)

  108. Sorensen C. D.: Tool material testing for FSW of high-temperature alloys. In: Proc. of 3rd Int. Symp. on FSW, 2001 (2001)

  109. Colligan, K.J.: Friction stir welding of aluminum using a tapered shoulder tool. In: Friction Stir Welding and Processing III, TMS Annual Meeting. pp. 161–170. , San Francisco (2005)

  110. Reimann, M.; Goebel, J.; Dos Santos, J.F.: Microstructure and mechanical properties of keyhole repair welds in AA 7075–T651 using refill friction stir spot welding. Mater. Des. 132, 283–294 (2017). https://doi.org/10.1016/J.MATDES.2017.07.013

    Article  Google Scholar 

  111. Huang, Y.; Xie, Y.; Meng, X.; Lv, Z.; Cao, J.: Numerical design of high depth-to-width ratio friction stir welding. J. Mater. Process. Technol. 252, 233–241 (2018). https://doi.org/10.1016/J.JMATPROTEC.2017.09.029

    Article  Google Scholar 

  112. Buchibabu, V.; Reddy, G.M.; De, A.: Probing torque, traverse force and tool durability in friction stir welding of aluminum alloys. J. Mater. Process. Technol. 241, 86–92 (2017). https://doi.org/10.1016/J.JMATPROTEC.2016.11.008

    Article  Google Scholar 

  113. Ashish, B.I.S.T.; Saini, J.S.; Sharma, B.: A review of tool wear prediction during friction stir welding of aluminum matrix composite. Trans. Nonferrous Met. Soc. China. 26, 2003–2018 (2016). https://doi.org/10.1016/S1003-6326(16)64318-2

    Article  Google Scholar 

  114. Cao, X.; Jahazi, M.: Effect of tool rotational speed and probe length on lap joint quality of a friction stir welded magnesium alloy. Mater. Des. 32, 1–11 (2011). https://doi.org/10.1016/J.MATDES.2010.06.048

    Article  Google Scholar 

  115. Atharifar, H.; Lin, D.; Kovacevic, R.: Numerical and experimental investigations on the loads carried by the tool during friction stir welding. J. Mater. Eng. Perform. 18, 339–350 (2009). https://doi.org/10.1007/S11665-008-9298-1/FIGURES/14

    Article  Google Scholar 

  116. Hajideh, M.R.; Farahani, M.; Alavi, S.A.D.; Ramezani, N.M.: Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets. J. Manuf. Process. 26, 269–279 (2017). https://doi.org/10.1016/J.JMAPRO.2017.02.018

    Article  Google Scholar 

  117. London, B., Mahoney, M., Bingel, W., Calabrese, M., Bossi, R.H., Waldron, D.: Material flow in friction stir welding monitored with Al–SiC and Al–W composite markers. In: Friction Stir Welding and processing II, TMS Annual Meeting. pp. 3–12. , San Diego, California (2003)

  118. Nelson, T.W.: Friction stir welding- A brief review and perspective for the future. In: Friction Stir Welding and Processing III, TMS Annual Meeting. pp. 149–189. , San Francisco, California (2005)

  119. Froes, F.H.: Fourth international symposium on friction stir welding (FSW). Mater. Technol. 18, 234–239 (2003). https://doi.org/10.1080/10667857.2003.11753049

    Article  Google Scholar 

  120. Thomas, W.M.; Johnson, K.I.; Wiesner, C.S.: Friction stir welding – recent developments in tool and process technologies. Adv. Eng. Mater. 5, 485–490 (2003). https://doi.org/10.1002/ADEM.200300355

    Article  Google Scholar 

  121. Thomas, W.M., Nicholas, E.D., Kallee, S.W.: Friction based technologies for joining and processing. In: TMS Friction Stir Welding and Processing Conference. pp. 1–8. , Indianapolis (2001)

  122. Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T.: Review: friction stir welding tools. Sci. Technol. Weld. Join. 16, 325–342 (2013). https://doi.org/10.1179/1362171811Y.0000000023

    Article  Google Scholar 

  123. Babu, S.D.; Sevvel, P.; Kumar, R.S.; Vijayan, V.; Subramani, J.: Development of thermo mechanical model for prediction of temperature diffusion in different FSW tool pin geometries during joining of AZ80A Mg alloys. J. Inorg. Organomet. Polym. Mater. 31, 3196–3212 (2021). https://doi.org/10.1007/S10904-021-01931-4/FIGURES/12

    Article  Google Scholar 

  124. Rajakumar, S.; Muralidharan, C.; Balasubramanian, V.: Statistical analysis to predict grain size and hardness of the weld nugget of friction-stir-welded AA6061-T6 aluminum alloy joints. Int. J. Adv. Manuf. Technol. 57, 151–165 (2011). https://doi.org/10.1007/s00170-011-3279-5

    Article  Google Scholar 

  125. Oliveira, P.H.F.; Amancio-Filho, S.T.; Dos Santos, J.F.; Hage, E.: Preliminary study on the feasibility of friction spot welding in PMMA. Mater. Lett. 64, 2098–2101 (2010). https://doi.org/10.1016/J.MATLET.2010.06.050

    Article  Google Scholar 

  126. Strand, S.R.: Effects of friction stir welding on polymer microstructure. Brigham Young University, (2004)

  127. Abu-warda, N.; López, M.D.; González, B.; Otero, E.; Escalera-Rodríguez, M.D.; Cruz, S.; Rey, P.; Verdera, D.; Utrilla, M.V.: Precipitation hardening and corrosion behavior of friction stir welded A6005-TiB2 nanocomposite. Met. Mater. Int. 27, 2867–2878 (2021). https://doi.org/10.1007/S12540-020-00688-8/TABLES/2

    Article  Google Scholar 

  128. Awang, M.; Mucino, V.H.; Feng, Z.; David, S.A.: Thermo-mechanical modeling of friction stir spot welding (FSSW). SAE Tech. Pap. (2006). https://doi.org/10.4271/2006-01-1392

    Article  Google Scholar 

  129. Hancock, R.: Friction welding of aluminum cuts energy costs by 99%. Weld. J. - New York. 83, 40–43 (2004)

    Google Scholar 

  130. Squeo, E.A., Bruno, G., Guglielmotti, A., Quadrini, F.: Friction stir welding of polyethylene sheets. Ann. “Dunarea Jos” Univ. Galati, Fascicle V, Technol. Mach. Build. 27, 241–246 (2009)

  131. Kah, P., Suoranta, R., Martikainen, J.: Joining of sheet metals using different welding processes. In: Proceedings of 16th International Conference, Mechanika. pp. 158–163. , Lithuania (2011)

  132. Cabibbo, M.; Meccia, E.; Evangelista, E.: TEM analysis of a friction stir-welded butt joint of Al–Si–Mg alloys. Mater. Chem. Phys. 81, 289–292 (2003). https://doi.org/10.1016/S0254-0584(02)00604-1

    Article  Google Scholar 

  133. Imtiaz, A.; Tariq, A.; Janjua, A.B.; Sarfraz, F.; Khawaja, A.U.H.: Parametric optimization of butt welded polycarbonate using response surface methodology. Mehran Univ. Res. J. Eng. Technol. 40, 38–52 (2021)

    Article  Google Scholar 

  134. Mahmoud, T.S.; Khalifa, T.A.: Microstructural and mechanical characteristics of aluminum alloy AA5754 friction stir spot welds. J. Mater. Eng. Perform. 23, 898–905 (2014). https://doi.org/10.1007/S11665-013-0828-0/FIGURES/12

    Article  Google Scholar 

  135. Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C.: Microstructural issues in a friction-stir-welded aluminum alloy. Scr. Mater. 38, 703–708 (1998)

    Article  Google Scholar 

  136. Çam, G.; Ventzke, V.; Dos Santos, J.F.; Koçak, M.; Jennequin, G.; Gonthier-Maurin, P.: Characterization of electron beam welded aluminum alloys. Sci. Technol. Weld. Join. 4, 317–323 (2013). https://doi.org/10.1179/136217199101537941

    Article  Google Scholar 

  137. Uzun, H.; Dalle Donne, C.; Argagnotto, A.; Ghidini, T.; Gambaro, C.: Friction stir welding of dissimilar Al 6013–T4 To X5CrNi18-10 stainless steel. Mater. Des. 26, 41–46 (2005). https://doi.org/10.1016/J.MATDES.2004.04.002

    Article  Google Scholar 

  138. Colligan, K.: Material flow behavior during friction stir welding of aluminum. Weld. J. 229–237 (1999)

  139. Barlas, Z.; Uzun, H.: Microstructure and mechanical properties of friction stir butt welded dissimilar pure copper/brass alloy plates. Int. J. Mater. Res. 101, 801–807 (2010). https://doi.org/10.3139/146.110340/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  140. Barcellona, A.; Buffa, G.; Fratini, L.; Palmeri, D.: On microstructural phenomena occurring in friction stir welding of aluminum alloys. J. Mater. Process. Technol. 177, 340–343 (2006). https://doi.org/10.1016/J.JMATPROTEC.2006.03.192

    Article  Google Scholar 

  141. Dickerson, T.L.; Przydatek, J.: Fatigue of friction stir welds in aluminum alloys that contain root flaws. Int. J. Fatigue. 25, 1399–1409 (2003). https://doi.org/10.1016/S0142-1123(03)00060-4

    Article  Google Scholar 

  142. Mahoney, M.W.; Rhodes, C.G.; Flintoff, J.G.; Bingel, W.H.; Spurling, R.A.: Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A. 29, 1955–1964 (1998). https://doi.org/10.1007/S11661-998-0021-5

    Article  Google Scholar 

  143. Zhou, C.; Yang, X.; Luan, G.: Fatigue properties of friction stir welds in Al 5083 alloy. Scr. Mater. 53, 1187–1191 (2005). https://doi.org/10.1016/J.SCRIPTAMAT.2005.07.016

    Article  Google Scholar 

  144. Berbon, P.B.; Bingel, W.H.; Mishra, R.S.; Bampton, C.C.; Mahoney, M.W.: Friction stir processing: A tool to homogenize nanocomposite aluminum alloys. Scr. Mater. 44, 61–66 (2001). https://doi.org/10.1016/S1359-6462(00)00578-9

    Article  Google Scholar 

  145. Lee, W.B.; Yeon, Y.M.; Jung, S.B.: The improvement of mechanical properties of friction-stir-welded A356 Al alloy. Mater. Sci. Eng. A. 355, 154–159 (2003). https://doi.org/10.1016/S0921-5093(03)00053-4

    Article  Google Scholar 

  146. Sato, Y.S.; Urata, M.; Kokawa, H.; Ikeda, K.: Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys. Mater. Sci. Eng. A. 354, 298–305 (2003). https://doi.org/10.1016/S0921-5093(03)00008-X

    Article  Google Scholar 

  147. Threadgilll, P.L.; Leonard, A.J.; Shercliff, H.R.; Withers, P.J.: Friction stir welding of aluminum alloys. Int. Mater. Rev. 54, 49–93 (2013). https://doi.org/10.1179/174328009X411136

    Article  Google Scholar 

  148. Singh, V.P.; Patel, S.K.; Ranjan, A.; Kuriachen, B.: Recent research progress in solid state friction-stir welding of aluminum–magnesium alloys: a critical review. J. Mater. Res. Technol. 9, 6217–6256 (2020). https://doi.org/10.1016/J.JMRT.2020.01.008

    Article  Google Scholar 

  149. Feng, A.H.; Xiao, B.L.; Ma, Z.Y.: Grain boundary misorientation and texture development in friction stir welded SiCp/Al–Cu–Mg composite. Mater. Sci. Eng. A. 497, 515–518 (2008). https://doi.org/10.1016/J.MSEA.2008.07.044

    Article  Google Scholar 

  150. Rodrigues, D.M.; Loureiro, A.; Leitao, C.; Leal, R.M.; Chaparro, B.M.; Vilaça, P.: Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016–T4 thin welds. Mater. Des. 30, 1913–1921 (2009). https://doi.org/10.1016/J.MATDES.2008.09.016

    Article  Google Scholar 

  151. Kumar, R.; Singh, R.; Ahuja, I.P.S.; Penna, R.; Feo, L.: Weldability of thermoplastic materials for friction stir welding- A state of art review and future applications. Compos. Part B Eng. 137, 1–15 (2018). https://doi.org/10.1016/J.COMPOSITESB.2017.10.039

    Article  Google Scholar 

  152. Sundaram, N.S.; Murugan, N.: Tensile behavior of dissimilar friction stir welded joints of aluminum alloys. Mater. Des. 31, 4184–4193 (2010). https://doi.org/10.1016/J.MATDES.2010.04.035

    Article  Google Scholar 

  153. Dashatan, S.H.; Azdast, T.; Ahmadi, S.R.; Bagheri, A.: Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Mater. Des. 45, 135–141 (2013). https://doi.org/10.1016/J.MATDES.2012.08.071

    Article  Google Scholar 

  154. Soundararajan, V.; Yarrapareddy, E.; Kovacevic, R.: Investigation of the friction stir lap welding of aluminum alloys AA 5182 and AA 6022. J. Mater. Eng. Perform. 16, 477–484 (2007). https://doi.org/10.1007/S11665-007-9081-8/TABLES/5

    Article  Google Scholar 

  155. Papahn, H.; Bahemmat, P.; Haghpanahi, M.; Sommitsch, C.: Study on governing parameters of thermal history during underwater friction stir welding. Int. J. Adv. Manuf. Technol. 78, 1101–1111 (2015). https://doi.org/10.1007/s00170-014-6615-8

    Article  Google Scholar 

  156. Liu, H.J.; Zhang, H.J.; Yu, L.: Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Mater. Des. 32, 1548–1553 (2011). https://doi.org/10.1016/J.MATDES.2010.09.032

    Article  Google Scholar 

  157. Mendes, N.; Neto, P.; Simão, M.A.; Loureiro, A.; Pires, J.N.: A novel friction stir welding robotic platform: welding polymeric materials. Int. J. Adv. Manuf. Technol. 85, 37–46 (2014). https://doi.org/10.1007/S00170-014-6024-Z

    Article  Google Scholar 

  158. Huang, Y.; Meng, X.; Xie, Y.; Wan, L.; Lv, Z.; Cao, J.; Feng, J.: Friction stir welding/processing of polymers and polymer matrix composites. Compos. Part A Appl. Sci. Manuf. 105, 235–257 (2018). https://doi.org/10.1016/J.COMPOSITESA.2017.12.005

    Article  Google Scholar 

  159. Elyasi, M., Derazkola, H.A., Hosseinzadeh, M.: Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminum. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 1234–1241 (2016). https://doi.org/10.1177/0954405416645986

  160. Sevvel, P.; Babu, S.D.; Kumar, R.S.: Peak temperature correlation and temperature distribution during joining of AZ80A Mg alloy by FSW-A numerical and experimental investigation. Stroj. Vestnik/J. Mech. Eng. 66, 395–407 (2020)

    Article  Google Scholar 

  161. Gan, Y.X.; Solomon, D.; Reinbolt, M.: Friction stir processing of particle reinforced composite materials. Materials (Basel). 3, 329–350 (2010). https://doi.org/10.3390/MA3010329

    Article  Google Scholar 

  162. Sahu, P.K.; Pal, S.: Influence of metallic foil alloying by FSW process on mechanical properties and metallurgical characterization of AM20 Mg alloy. Mater. Sci. Eng. A. 684, 442–455 (2017). https://doi.org/10.1016/J.MSEA.2016.12.081

    Article  Google Scholar 

  163. Niu, P.; Li, W.; Yang, X.; Vairis, A.: Effects of microstructural asymmetries across friction stir welded AA2024 joints on mechanical properties. Sci. Technol. Weld. Join. 23, 58–62 (2017). https://doi.org/10.1080/13621718.2017.1328765

    Article  Google Scholar 

  164. Babu, S.D.D.; Sevvel, P.; Kumar, R.S.: Simulation of heat transfer and analysis of impact of tool pin geometry and tool speed during friction stir welding of AZ80A Mg alloy plates. J. Mech. Sci. Technol. 34, 4239–4250 (2020). https://doi.org/10.1007/S12206-020-0916-7

    Article  Google Scholar 

  165. Sevvel, P.; Satheesh, C.; Senthil Kumar, R.: Generation of regression models and multi-response optimization of friction stir welding technique parameters during the fabrication of AZ80A Mg alloy joints. Trans. Can. Soc. Mech. Eng. 44, 311–324 (2019). https://doi.org/10.1139/TCSME-2019-0162

    Article  Google Scholar 

  166. Capone, C.; Di Landro, L.; Inzoli, F.; Penco, M.; Sartore, L.: Thermal and mechanical degradation during polymer extrusion processing. Polym. Eng. Sci. 47, 1813–1819 (2007). https://doi.org/10.1002/PEN.20882

    Article  Google Scholar 

  167. Bozzi, S.; Helbert-Etter, A.L.; Baudin, T.; Klosek, V.; Kerbiguet, J.G.; Criqui, B.: Influence of FSSW parameters on fracture mechanisms of 5182 aluminum welds. J. Mater. Process. Technol. 210, 1429–1435 (2010). https://doi.org/10.1016/J.JMATPROTEC.2010.03.022

    Article  Google Scholar 

  168. El’darov, E.G., Mamedov, F.V., Gol’dberg, V.M., Zaikov, G.E.: A kinetic model of polymer degradation during extrusion. Polym. Degrad. Stab. 51, 271–279 (1996). https://doi.org/10.1016/0141-3910(95)00160-3

  169. Manring, L.E.: Thermal degradation of poly (methyl methacrylate). 4. Random side-group scission. Macromolecules. 24, 3304–3309 (1991). https://doi.org/10.1021/MA00011A040

  170. Denq, B.L.; Hu, Y.S.; Chiu, W.Y.; Chen, L.W.; Chiu, Y.S.: Thermal degradation behavior and physical properties for poly (methyl methacrylate) blended with propyl ester phosphazene. Polym. Degrad. Stab. 57, 269–278 (1997). https://doi.org/10.1016/S0141-3910(97)00006-2

    Article  Google Scholar 

  171. Bate, D.M.; Lehrle, R.S.: A new approach for measuring the rate of pyrolysis of cross-linked polymers: evaluation of degradation rate constants for cross-linked PMMA. Polym. Degrad. Stab. 62, 67–71 (1998). https://doi.org/10.1016/S0141-3910(97)00262-0

    Article  Google Scholar 

  172. Sung, J.H.; Lim, S.T.; Kim, C.A.; Heejeong, C.; Park, H.J.: Mechanical degradation kinetics of poly (ethylene oxide) in a turbulent flow. Korea-Australia Rheol. J. 16, 57–62 (2004)

    Google Scholar 

  173. Da Costa, H.M.; Ramos, V.D.; Rocha, M.C.G.: Rheological properties of polypropylene during multiple extrusion. Polym. Test. 24, 86–93 (2005). https://doi.org/10.1016/J.POLYMERTESTING.2004.06.006

    Article  Google Scholar 

  174. Troughton, M.J.: Handbook of Plastics Joining: A Practical Guide. William Andrew, Cambridge, UK (2008)

  175. Ratanathavorn, W.: Hybrid Joining of Aluminum to Thermoplastics with Friction Stir Welding, (2012)

  176. Nelson, T.W., Sorenson, C.D., Johns, C.J.: Friction Stir Welding of Polymeric Materials, (2004)

  177. Murr, L.E.; Liu, G.; McClure, J.C.: Dynamic recrystallization in friction-stir welding of aluminum alloy 1100. J. Mater. Sci. Lett. 16, 1801–1803 (1997). https://doi.org/10.1023/A:1018556332357

    Article  Google Scholar 

  178. Lancaster, J.F.: Metallurgy of Welding. Elsevier, Cambridge, England (1999)

    Book  Google Scholar 

  179. Shigematsu, I.; Kwon, Y.J.; Saito, N.: Dissimilar friction stir welding for tailor-welded blanks of aluminum and magnesium alloys. Mater. Trans. 50, 197 (2009). https://doi.org/10.2320/MATERTRANS.MER2008326

    Article  Google Scholar 

  180. Bhagwan, A.V.; Kridli, G.T.; Friedman, P.A.: Formability improvement in aluminum tailor-welded blanks via material combinations. J. Manuf. Process. 6, 134–140 (2004). https://doi.org/10.1016/S1526-6125(04)70067-5

    Article  Google Scholar 

  181. Tušek, J.; Kampuš, Z.; Suban, M.: Welding of tailored blanks of different materials. J. Mater. Process. Technol. 119, 180–184 (2001). https://doi.org/10.1016/S0924-0136(01)00937-2

    Article  Google Scholar 

  182. Borrisutthekul, R.; Yachi, T.; Miyashita, Y.; Mutoh, Y.: Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy. Mater. Sci. Eng. A. 467, 108–113 (2007). https://doi.org/10.1016/J.MSEA.2007.03.049

    Article  Google Scholar 

  183. Park, S.H.C., Masato, M., Yutaka, S.S., Hiroyuki, K.: Dissimilar friction-stir welding of Al alloy 1050 and Mg alloy AZ31. In: Proceedings of the KWS Conference. pp. 534–538. The Korean Welding and Joining Society, Sendai, Japan (2002)

  184. Park, H.S.; Kimura, T.; Murakami, T.; Nagano, Y.; Nakata, K.; Ushio, M.: Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy. Mater. Sci. Eng. A. 371, 160–169 (2004). https://doi.org/10.1016/J.MSEA.2003.11.030

    Article  Google Scholar 

  185. Lee, W.B.; Jung, S.B.: The joint properties of copper by friction stir welding. Mater. Lett. 58, 1041–1046 (2004). https://doi.org/10.1016/J.MATLET.2003.08.014

    Article  Google Scholar 

  186. Xie, G.M.; Ma, Z.Y.; Geng, L.: Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scr. Mater. 57, 73–76 (2007). https://doi.org/10.1016/J.SCRIPTAMAT.2007.03.048

    Article  Google Scholar 

  187. Pilchak, A.L.; Norfleet, D.M.; Juhas, M.C.; Williams, J.C.: Friction stir processing of investment-cast Ti-6Al-4V: microstructure and properties. Metall. Mater. Trans. A. 39, 1519–1524 (2007). https://doi.org/10.1007/s11661-007-9236-0

    Article  Google Scholar 

  188. Mironov, S.; Zhang, Y.; Sato, Y.S.; Kokawa, H.: Crystallography of transformed β microstructure in friction stir welded Ti–6Al–4V alloy. Scr. Mater. 59, 511–514 (2008). https://doi.org/10.1016/J.SCRIPTAMAT.2008.04.038

    Article  Google Scholar 

  189. Liu, H.J.; Zhou, L.; Liu, Q.W.: Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy. Mater. Des. 31, 1650–1655 (2010). https://doi.org/10.1016/J.MATDES.2009.08.025

    Article  Google Scholar 

  190. Barabash, O.M.; Barabash, R.I.; Ice, G.E.; Feng, Z.; Gandy, D.: X-ray microdiffraction and EBSD study of FSP induced structural/phase transitions in a Ni-based superalloy. Mater. Sci. Eng. A. 524, 10–19 (2009). https://doi.org/10.1016/J.MSEA.2009.03.086

    Article  Google Scholar 

  191. Song, K.H.; Nakata, K.: Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding. Mater. Des. 31, 2942–2947 (2010). https://doi.org/10.1016/J.MATDES.2009.12.020

    Article  Google Scholar 

  192. Reynolds, A.P.; Tang, W.; Gnaupel-Herold, T.; Prask, H.: Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scr. Mater. 48, 1289–1294 (2003). https://doi.org/10.1016/S1359-6462(03)00024-1

    Article  Google Scholar 

  193. Sato, Y.S.; Nelson, T.W.; Sterling, C.J.: Recrystallization in type 304L stainless steel during friction stirring. Acta Mater. 53, 637–645 (2005). https://doi.org/10.1016/J.ACTAMAT.2004.10.017

    Article  Google Scholar 

  194. Cui, L.; Fujii, H.; Tsuji, N.; Nogi, K.: Friction stir welding of a high carbon steel. Scr. Mater. 56, 637–640 (2007). https://doi.org/10.1016/J.SCRIPTAMAT.2006.12.004

    Article  Google Scholar 

  195. Somasekharan, A.C.; Murr, L.E.: Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061–T6 aluminum alloy. Mater. Charact. 52, 49–64 (2004). https://doi.org/10.1016/J.MATCHAR.2004.03.005

    Article  Google Scholar 

  196. Ouyang, J.; Yarrapareddy, E.; Kovacevic, R.: Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J. Mater. Process. Technol. 172, 110–122 (2006). https://doi.org/10.1016/J.JMATPROTEC.2005.09.013

    Article  Google Scholar 

  197. Liu, P.; Shi, Q.; Wang, W.; Wang, X.; Zhang, Z.: Microstructure and XRD analysis of FSW joints for copper T2/aluminum 5A06 dissimilar materials. Mater. Lett. 62, 4106–4108 (2008). https://doi.org/10.1016/J.MATLET.2008.06.004

    Article  Google Scholar 

  198. Kimapong, K.; Watanabe, T.: Friction stir welding of aluminum alloy to steel. Weld. J. 83, 277–282 (2004)

    Google Scholar 

  199. Patel, A.R.; Dalwadi, C.G.; Rana, H.G.: A review: dissimilar material joining of metal to polymer using friction stir welding (FSW). IJSTE-Int J. Sci. Technol. Eng. 2, 702–706 (2016)

    Google Scholar 

  200. Ellis, M.B.D.; Strangwood, M.: Welding of rapidly solidified Alloy 8009 (Al–8·5Fe–1·7Si–1·3V): preliminary study. Mater. Sci. Technol. 12, 970–977 (2013). https://doi.org/10.1179/MST.1996.12.11.970

    Article  Google Scholar 

  201. Lee, R.T.; Liu, C.T.; Chiou, Y.C.; Chen, H.L.: Effect of nickel coating on the shear strength of FSW lap joint between Ni–Cu alloy and steel. J. Mater. Process. Technol. 213, 69–74 (2013). https://doi.org/10.1016/J.JMATPROTEC.2012.07.014

    Article  Google Scholar 

  202. Sonne, M.R.; Tutum, C.C.; Hattel, J.H.; Simar, A.; De Meester, B.: The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024–T3. J. Mater. Process. Technol. 213, 477–486 (2013). https://doi.org/10.1016/J.JMATPROTEC.2012.11.001

    Article  Google Scholar 

  203. Winiczenko, R.; Goroch, O.; Krzyńska, A.; Kaczorowski, M.: Friction welding of tungsten heavy alloy with aluminum alloy. J. Mater. Process. Technol. 246, 42–55 (2017). https://doi.org/10.1016/J.JMATPROTEC.2017.03.009

    Article  Google Scholar 

  204. Gharacheh, M.A.; Kokabi, A.H.; Daneshi, G.H.; Shalchi, B.; Sarrafi, R.: The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds. Int. J. Mach. Tools Manuf. 46, 1983–1987 (2006). https://doi.org/10.1016/J.IJMACHTOOLS.2006.01.007

    Article  Google Scholar 

  205. Paoletti, A.; Lambiase, F.; Di Ilio, A.: Optimization of friction stir welding of thermoplastics. Procedia CIRP. 33, 562–567 (2015). https://doi.org/10.1016/J.PROCIR.2015.06.078

    Article  Google Scholar 

  206. Arici, A.; Sinmazçelýk, T.: Effects of double passes of the tool on friction stir welding of polyethylene. J. Mater. Sci. 40, 3313–3316 (2005). https://doi.org/10.1007/s10853-005-2709-x

    Article  Google Scholar 

  207. Chen, Y.L., Faulkner, D.L., Parlow, P.M., Verbrugge, M.W., Gayden, X.Q., Fickes, J.D., Foss, P.H.: Friction stir weld bonding of metal-polymer-metal laminates, (2009)

  208. Amancio-Filho, S.T.; Bueno, C.; Dos Santos, J.F.; Huber, N.; Hage, E.: On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater. Sci. Eng. A. 528, 3841–3848 (2011). https://doi.org/10.1016/J.MSEA.2011.01.085

    Article  Google Scholar 

  209. Saeedy, S.; Besharati Givi, M.K.: Experimental study on the effects of rotational speed and attack angle on high density polyethylene (HDPE) friction stir welded butt joints. Adv. Mater. Res. 189–193, 3583–3587 (2011). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.189-193.3583

    Article  Google Scholar 

  210. Saeedy, S., Besharati Givi, M.K.: Investigation of the effects of critical process parameters of friction stir welding of polyethylene. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225, 1305–1310 (2011). https://doi.org/10.1243/09544054JEM1989

  211. Abdel-Gwad, E., Omar, A.B., Radwan, A.: Loadability of friction stir welded joints of high density polyethylene. Port-Said Eng. Res. J. 19, 100–107 (2015). https://doi.org/10.21608/PSERJ.2015.36763

  212. Sheikh-Ahmad, J.Y.; Ali, D.S.; Deveci, S.; Almaskari, F.; Jarrar, F.: Friction stir welding of high density polyethylene—carbon black composite. J. Mater. Process. Technol. 264, 402–413 (2019). https://doi.org/10.1016/J.JMATPROTEC.2018.09.033

    Article  Google Scholar 

  213. Sheikh-Ahmad, J.Y., Ali, D.S., Jarrar, F., Deveci, S.: A Study of friction stir welding of high density polyethylene. In: Proceedings of the ASME 13th International Manufacturing Science and Engineering Conference. pp. 1–8. American Society of Mechanical Engineers Digital Collection (2018)

  214. Mustapha, K.; Abdessamad, B.; Azzeddine, B.; Mokhtar, Z.: Experimental investigation of friction stir welding process on high-density polyethylene. J. Fail. Anal. Prev. 20, 590–596 (2020). https://doi.org/10.1007/S11668-020-00867-0/FIGURES/13

    Article  Google Scholar 

  215. Bilici, M.K.: Investigation of the effects of welding variables on the welding defects of the friction stir welded high density polyethylene sheets: https://doi.org/10.1177/00952443211058845. 54, 457–476 (2021). https://doi.org/10.1177/00952443211058845

  216. Rezgui, M.A.; Trabelsi, A.C.; Ayadi, M.; Hamrouni, K.: Optimization of friction stir welding process of high density polyethylene. Int. J. Prod. Qual. Eng. 2, 55–61 (2011)

    Google Scholar 

  217. Bilici, M.K.; Yukler, A.I.; Kurtulmus, M.; Kartal, İ: Investigation of factors affecting friction stir welding of polyethylene by ANOVA analysis. Mater. Sci. 27, 367–372 (2021). https://doi.org/10.5755/J02.MS.27591

    Article  Google Scholar 

  218. Saeedy, S., Besharati Givi, M.K.: Experimental investigation of double side friction stir welding (FSW) on high density polyethylene blanks. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. pp. 845–848. American Society of Mechanical Engineers Digital Collection, Istanbul (2010)

  219. Moreno-Moreno, M.; Romero, Y.M.; Zambrano, H.R.; Restrepo-Zapata, N.C.; Afonso, C.R.M.; Unfried-Silgado, J.: Mechanical and thermal properties of friction-stir welded joints of high density polyethylene using a non-rotational shoulder tool. Int. J. Adv. Manuf. Technol. 97, 2489–2499 (2018). https://doi.org/10.1007/S00170-018-2102-Y

    Article  Google Scholar 

  220. Romero, Y.M.; Moreno-Moreno, M.; Cardozo, B.A.; Rueda, W.P.; Pacheco, S.C.; Unfried-Silgado, J.: Weldability of high-density polyethylene using friction stir welding with a non-rotational shoulder tool. Weld. Int. 32, 640–649 (2019). https://doi.org/10.1080/09507116.2017.1347353

    Article  Google Scholar 

  221. Eslami, S.; Miranda, J.F.; Mourão, L.; Tavares, P.J.; Moreira, P.M.G.P.: Polyethylene friction stir welding parameter optimization and temperature characterization. Int. J. Adv. Manuf. Technol. 99, 127–136 (2018). https://doi.org/10.1007/S00170-018-2504-X

    Article  Google Scholar 

  222. Hamrouni, K.; Rezgui, M.-A.; Trabelsi, A.; Kiss, Z.; Nasri, R.: Optimization of transversal flow stress and strain and weld seam microstructure analysis in butt-HDPE friction stir welded plates. Mech. Ind. 21, 501 (2020). https://doi.org/10.1051/MECA/2020047

    Article  Google Scholar 

  223. Mostafapour, A.; Azarsa, E.: A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties. Int. J. Phys. Sci. 7, 647–654 (2012). https://doi.org/10.5897/IJPS11.1653

    Article  Google Scholar 

  224. Azarsa, E.; Mostafapour, A.: Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J. Manuf. Process. 16, 149–155 (2014). https://doi.org/10.1016/J.JMAPRO.2013.12.003

    Article  Google Scholar 

  225. Vijendra, B.; Sharma, A.: Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. J. Manuf. Process. 20, 234–244 (2015). https://doi.org/10.1016/J.JMAPRO.2015.07.005

    Article  Google Scholar 

  226. Azarsa, E.; Asl, A.M.; Tavakolkhah, V.: Effect of process parameters and tool coating on mechanical properties and microstructure of heat assisted friction stir welded polyethylene sheets. Adv. Mater. Res. 445, 765–770 (2012). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.445.765

    Article  Google Scholar 

  227. Rehman, R.U.; Sheikh-Ahmad, J.; Deveci, S.: Effect of preheating on joint quality in the friction stir welding of bimodal high density polyethylene. Int. J. Adv. Manuf. Technol. 117, 455–468 (2021). https://doi.org/10.1007/S00170-021-07740-W/FIGURES/15

    Article  Google Scholar 

  228. Sheikh-Ahmad, J.Y.; Deveci, S.; Almaskari, F.; Rehman, R.U.: Effect of process temperatures on material flow and weld quality in the friction stir welding of high density polyethylene. J. Mater. Res. Technol. 18, 1692–1703 (2022). https://doi.org/10.1016/J.JMRT.2022.03.082

    Article  Google Scholar 

  229. Raza, K.; Shamir, M.; Qureshi, M.K.A.; Shaikh, A.S.; Zain-ul-abdein, M.: On the friction stir welding, tool design optimization, and strain rate-dependent mechanical properties of HDPE–ceramic composite joints. J. Thermoplast. Compos. Mater. 31, 291–310 (2017). https://doi.org/10.1177/0892705717697779

    Article  Google Scholar 

  230. Gao, J.; Shen, Y.; Zhang, J.; Xu, H.: Submerged friction stir weld of polyethylene sheets. J. Appl. Polym. Sci. 131, 41059 (2014). https://doi.org/10.1002/APP.41059

    Article  Google Scholar 

  231. Yan, Y.; Shen, Y.; Lan, B.; Gao, J.: Influences of friction stir welding parameters on morphology and tensile strength of high density polyethylene lap joints produced by double-pin tool. J. Manuf. Process. 28, 33–40 (2017). https://doi.org/10.1016/J.JMAPRO.2017.05.019

    Article  Google Scholar 

  232. Singh, R.; Kumar, V.; Feo, L.; Fraternali, F.: Experimental investigations for mechanical and metallurgical properties of friction stir welded recycled dissimilar polymer materials with metal powder reinforcement. Compos. Part B Eng. 103, 90–97 (2016). https://doi.org/10.1016/J.COMPOSITESB.2016.08.005

    Article  Google Scholar 

  233. Sanchez Miranda, M.A., Dominguez Almaraz, M.G., Villalon Lopez, J.J., Dominguez, A.E., Ruiz Vilchez, J.A., Verduzco Juarez, J.C.: Dissimilar Joining of UHWMPE and PP Using Friction Stir Welding (FSW), and Mechanical Properties Evaluation. 1–17 (2022). https://doi.org/10.21203/rs.3.rs-1503428/v1

  234. Gao, J.; Li, C.; Shilpakar, U.; Shen, Y.: Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process. Mater. Des. 86, 289–296 (2015). https://doi.org/10.1016/J.MATDES.2015.07.095

    Article  Google Scholar 

  235. Gao, J.; Shen, Y.; Li, C.: Fabrication of high-density polyethylene/multiwalled carbon nanotube composites via submerged friction stir processing: evaluation of morphological, mechanical, and thermal behavior. J. Thermoplast. Compos. Mater. 30, 241–254 (2015). https://doi.org/10.1177/0892705715598360

    Article  Google Scholar 

  236. Hasanzadeh, R.; Azdast, T.; Doniavi, A.; Babazadeh, S.; Lee, R.E.; Daryadel, M.; Shishavan, S.M.: Welding properties of polymeric nanocomposite parts containing alumina nanoparticles in friction stir welding process. Int. J. Eng. Trans. A Basics. 30, 143–151 (2017). https://doi.org/10.5829/idosi.ije.2017.30.01a.18

    Article  Google Scholar 

  237. Gao, J., Li, C., Shen, Y.: Investigations into the mechanical, morphological and thermal analyses of friction stir processing of high-density polyethylene composites. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232, 1193–1200 (2016). https://doi.org/10.1177/0954405416666892

  238. Gao, J., Shen, Y., Xu, H.: Investigations for the mechanical, macro-, and microstructural analyses of dissimilar submerged friction stir welding of acrylonitrile butadiene styrene and polycarbonate sheets. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 1213–1220 (2015). https://doi.org/10.1177/0954405415572663

  239. Salih, S.I.; Oleiwi, J.K.; Alkhidhir, S.A.: Comparative study of some mechanical properties of hybrid polymeric composites prepared by using friction stir processing. J. Adv. Res. Dyn. Control Syst. 10, 1316–1326 (2018)

    Google Scholar 

  240. Habeeb, B.A., Al-Roubaiy, A.O.: Effect of adding boron carbide (B4C) to polymer for producing surface composite by friction stir processing. Iraqi J. Mech. Mater. Eng. 18, 436–445 (2018). https://doi.org/10.32852/iqjfmme.v18i3.178

  241. Khan, I., Hussain, G., Al-Ghamdi, K.A., Umer, R.: Investigation of impact strength and hardness of UHMW polyethylene composites reinforced with nano-hydroxyapatite particles fabricated by friction stir processing. Polymers (Basel). 11, 1041 (2019). https://doi.org/10.3390/POLYM11061041

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahrettin Ozturk.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Appendices

Appendices

See Tables 5, 6, 7, 8, 9 and 10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, M., Ozturk, F. & Sheikh-Ahmad, J. A Comprehensive Review on Friction Stir Welding of High-Density Polyethylene. Arab J Sci Eng 48, 11167–11210 (2023). https://doi.org/10.1007/s13369-023-08048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08048-5

Keywords

Navigation