Skip to main content
Log in

Magnetohydrodynamic Micropolar Nanofluid Flow in a Shrinking Channel with Second-Order Velocity Slip and Thermal Radiation

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Magnetohydrodynamic (MHD) micropolar nanofluid flow in a shrinking channel is important due to its use in metallurgical processes, manufacturing industries and industrial applications. In this study, the flow and heat transfer of an electrically conducting micropolar nanofluid passing through a shrinking channel is investigated with the effects of second-order velocity slip conditions and thermal radiation. Using the similarity transformations, the governing dimensional equations were transformed into ordinary differential equations, which have been solved by the finite difference method. The results for skin friction coefficient (Rex1/2Cfx), couple stress (mx), and local Nusselt number (Rex1/2Nufx), as well as flow profiles were presented graphically with variations of material constant (K), volume fraction of alumina nanoparticles (φ), micro-rotation parameter (n), second-order slip parameter (B), first-order slip parameter (A), magnetic parameter (M), suction parameter (S), and radiation parameter (R). The influences of φ, K, n, A, M, and S were significant. With higher K, A, n, and M, Rex1/2Cfx and Rex1/2Nufx increased. On the other hand, an increase in S caused a decrease in Rex1/2Cfx and an increase in Rex1/2Nufx. In the case of higher A and M, velocity increased, but angular velocity decreased. However, the converse was observed for the increase in φ and S. It is worth noting that the boundary layer separation was delayed for increasing values of K, n, A, and M, but accelerated for higher φ, B, and S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

a :

Positive constant

A :

First-order velocity slip parameter

B :

Second-order velocity slip parameter

B 0 :

Strength of magnetic field (kg s2 A1)

c p :

Heat capacity (J Kg1 K1)

C fx :

Skin friction coefficient

h :

Distance between bottom and top wall (m)

j :

Micro-inertia density

k :

Thermal conductivity (W m1 K1)

K :

Material parameter

M :

Magnetic field parameter

MHD:

Magnetohydrodynamic

n :

Micro-rotation parameter

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{N}\) :

Micro-rotation component

Pr:

Prandtl number

S :

Suction parameter

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{T}\) :

Temperature (K)

T c :

Top wall temperature (K)

T h :

Bottom wall temperature (K)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{u} ,\,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{v}\) :

Velocity component (m s1)

u e :

Local edge velocity (m s1)

u w :

Stretched velocity (m s1)

v w :

Mass flux through the wall

ν 0 :

Constant mass flux velocity (m s1)

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{x}\), \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y}\) :

Cartesian coordinates (m)

α :

Thermal diffusivity (m2 s1)

β :

Coefficient of thermal expansion (K–1)

Γ:

Micro-inertia parameter

∆:

Surface temperature parameter

θ :

Dimensionless temperature

κ :

Vortex viscosity

μ :

Absolute viscosity (Ns m2)

ν :

Kinematic viscosity (m2 s1)

ρ :

Density (kg m3)

σ :

Electrical conductivity (A2 s3 kg1 m2)

σ c :

Stefan–Boltzmann constant

φ :

Volume fraction

(′):

Differentiation with respect to η

f :

Base fluid

nf :

Nanofluid

s :

Nanoparticles

References

  1. Saraswathy, M.; Prakash, D.; Muthtamilselvan, M.; Mdallal, Q.M.A.: Arrhenius energy on asymmetric flow and heat transfer of micropolar fluids with variable properties: a sensitivity approach. Alex. Eng. J. 61, 12329–12352 (2022). https://doi.org/10.1016/j.aej.2022.06.015

    Article  Google Scholar 

  2. Pasha, P.; Mirzaei, S.; Zarinfar, M.: Application of numerical methods in micropolar fluid flow and heat transfer in permeable plates. Alex. Eng. J. 61, 2663–2672 (2022). https://doi.org/10.1016/j.aej.2021.08.040

    Article  Google Scholar 

  3. Ur Rehman, K.; Khan, A.U.; Abbas, S.; Shatanawi, W.: Thermal analysis of micropolar nanofluid in partially heated rectangular enclosure rooted with wavy heated rods. Case Stud. Therm. Eng. 42, 102701 (2023). https://doi.org/10.1016/j.csite.2023.102701

    Article  Google Scholar 

  4. Mahmood, W.; Sajid, M.; Ali, N.; Sadiq, M.N.: A new interfacial condition for the peristaltic flow of a micropolar fluid. Ain Shams Eng. J. 13, 101744 (2022). https://doi.org/10.1016/j.asej.2022.101744

    Article  Google Scholar 

  5. Reddy, S.R.R.; Reddy, P.B.A.: Thermal radiation effect on unsteady threedimensional MHD flow of micropolar fluid over a horizontal surface of a parabola of revolution. Propuls. Power Res. 11, 129–142 (2022). https://doi.org/10.1016/j.jppr.2022.01.001

    Article  Google Scholar 

  6. Xiu, W.; Salawu, S.O.; Oludoun, O.Y.; Ogunlaran, O.M.; Disu, A.B.: Combined impact of Lorentz force, micro-rotation, and thermo-migration of particles: dynamics of micropolar fluids experiencing nonlinear thermal radiation and activation energy. J. Magnet. Magnet. Mater. 569, 170447 (2023). https://doi.org/10.1016/j.jmmm.2023.170447

    Article  CAS  Google Scholar 

  7. Patel, H.R.; Patel, S.D.; Darji, R.: Mathematical Study of unsteady micropolar fluid flow due to non-linear stretched sheet in the presence of magnetic field. Int. J. Therm. 16, 100232 (2022). https://doi.org/10.1016/j.ijft.2022.100232

    Article  CAS  Google Scholar 

  8. Sharma, R.P.; Mishra, S.R.: A numerical simulation for the control of radiative heat energy and thermophoretic effects on MHD micropolar fluid with heat source. J. Ocean Eng. Sci. 7, 92–98 (2022). https://doi.org/10.1016/j.joes.2021.07.003

    Article  Google Scholar 

  9. Singh, K.; Pandey, A.K.; Kumara, M.: Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller–Box method. Propul. Power Res. 10, 194–207 (2021). https://doi.org/10.1016/j.jppr.2020.11.006

    Article  Google Scholar 

  10. Rehman, S.U.; Mariam, A.; Ullah, A.; Asjad, M.I.; Bajuri, M.Y.; Pansera, B.A.; Ahmadian, A.: Numerical computation of buoyancy and radiation effects on MHD micropolar nanofluid flow over a stretching/shrinking sheet with heat source. Case Stud. Therm. Eng. 25, 100867 (2021). https://doi.org/10.1016/j.csite.2021.100867

    Article  Google Scholar 

  11. Du, J.; Su, Q.; Li, L.; Wang, R.; Zhu, Z.: Evaluation of the influence of aggregation morphology on thermal conductivity of nanofluid by a new MPCD-MD hybrid method. Int. Commun. Heat Mass Transf. 127, 105501 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105501

    Article  CAS  Google Scholar 

  12. Jin, X.; Guan, H.; Wang, R.; Huang, L.; Shao, C.: The most crucial factor on the thermal conductivity of metal-water nanofluids: match degree of the phonon density of state. Powder Technol. 412, 117969 (2022). https://doi.org/10.1016/j.powtec.2022.117969

    Article  CAS  Google Scholar 

  13. Wang, R.; Feng, C.; Zhang, Z.; Shao, C.; Du, J.: What quantity of charge on the nanoparticle can result in a hybrid morphology of the nanofluid and a higher thermal conductivity? Powder Technol. 422, 118443 (2023). https://doi.org/10.1016/j.powtec.2023.118443

    Article  CAS  Google Scholar 

  14. Ali, L.; Ali, B.; Mousa, A.A.A.; Hammouch, Z.; Hussain, S.; Siddique, I.; Huang, Y.: Insight into significance of thermal stratification and radiation on dynamics of micropolar water based TiO2 nanoparticle via finite element simulation. J. Mater. Res. Technol. 19, 4209–4219 (2022). https://doi.org/10.1016/j.jmrt.2022.06.043

    Article  CAS  Google Scholar 

  15. Esfahani, I.C.: A data-driven physics-informed neural network for predicting the viscosity of nanofluids. AIP Adv. 13, 025206 (2023). https://doi.org/10.1063/5.0132846

    Article  CAS  ADS  Google Scholar 

  16. Qasemian, A.; Moradi, F.; Karamati, A.; Keshavarz, A.; Shakeri, A.: Hydraulic and thermal analysis of automatic transmission fluid in the presence of nano-particles and twisted tape: an experimental and numerical study. J. Cent. South Univ. 28, 3404–3417 (2021). https://doi.org/10.1007/s11771-021-4864-x

    Article  CAS  Google Scholar 

  17. Sun, W.; Liu, Q.; Zao, J.; Ali, H.M.; Said, Z.; Liu, C.: Experimental study on sodium acetate trihydrate/glycerol deep eutectic solvent nanofluids for thermal energy storage. J. Mol. Liq. 372, 121164 (2023). https://doi.org/10.1016/j.molliq.2022.121164

    Article  CAS  Google Scholar 

  18. Liu, L.; Stetsyuk, V.; Kubiak, K.J.; Yap, Y.F.; Goharzadeh, A.; Chai, J.C.: Nanoparticles for convective heat transfer enhancement: heat transfer coefficient and the effects of particle size and zeta potential. Chem. Eng. Commun. 206, 761–771 (2019). https://doi.org/10.1080/00986445.2018.1525364

    Article  CAS  Google Scholar 

  19. Bazmi, M.; Askari, S.; Ghasemy, E.; Rashidi, A.; Ettefaghi, E.: Nitrogen-doped carbon nanotubes for heat transfer applications: enhancement of conduction and convection properties of water/N-CNT nanofluid. J. Therm. Anal. Calori. 138, 69–79 (2019). https://doi.org/10.1007/s10973-019-08024-y

    Article  CAS  Google Scholar 

  20. Wang, R.; Chen, T.; Qi, J.; Du, J.; Pan, G.; Huang, L.: Investigation on the heat transfer enhancement by nanofluid under electric field considering electrophorestic and thermophoretic effect. Case Stud. Therm. Eng. 28, 101498 (2021). https://doi.org/10.1016/j.csite.2021.101498

    Article  Google Scholar 

  21. Ahmed, N.; Tassaddiq, A.; Alabdan, R.; Adnan, U.; Khan, S.; Noor, S.; Mohyud-Din, S.T.; Khan, I.: Applications of nanofluids for the thermal enhancement in radiative and dissipative flow over a wedge. Appl. Sci. 9, 1976 (2019). https://doi.org/10.3390/app9101976

    Article  CAS  Google Scholar 

  22. Salahuddin, T.; Khan, M.; Al-Mubaddel, F.S.; Alam, M.M.; Ahmad, I.: A study of heat and mass transfer micropolar fluid flow near the stagnation regions of an object. Case Stud. Therm. Eng. 26, 101064 (2021). https://doi.org/10.1016/j.csite.2021.101064

    Article  Google Scholar 

  23. Abbas, N.; Saleem, S.; Nadeem, S.; Alderremy, A.A.; Khana, A.U.: On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Res. Phys. 9, 1224–1232 (2018). https://doi.org/10.1016/j.rinp.2018.04.017

    Article  Google Scholar 

  24. Ali, B.; Shafiq, A.; Siddique, I.; Al-Mdallal, Q.; Jarad, F.: Significance of suction/injection, gravity modulation, thermal radiation, and magnetohydrodynamic on dynamics of micropolar fluid subject to an inclined sheet via finite element approach. Case Stud. Therm. Eng. 28, 101537 (2021). https://doi.org/10.1016/j.csite.2021.101537

    Article  Google Scholar 

  25. Wang, G.; Zhang, Z.; Wang, R.; Zhu, Z.: A review on heat transfer of nanofluids by applied electric field or magnetic field. Nanomaterials 10, 2386 (2020). https://doi.org/10.3390/nano10122386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goud, B.S.; Nandeppanavar, M.M.: Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Part. Diff. Eq. Appl. Math. 4, 100104 (2021). https://doi.org/10.1016/j.padiff.2021.100104

    Article  Google Scholar 

  27. Yadav, P.K.; Kumar, A.: An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit. Int. Commun. Heat Mass Transf. 124, 105266 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105266

    Article  Google Scholar 

  28. Yusuf, T.A.; Kumar, R.N.; Prasannakumara, B.C.; Adesanya, S.O.: Irreversibility analysis in micropolar fluid film along an incline porous substrate with slip effects. Int. Commun. Heat Mass Transf. 126, 105357 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105357

    Article  Google Scholar 

  29. Usafzai, W.K.; Aly, E.H.: Multiple exact solutions for micropolar slip flow and heat transfer of a bidirectional moving plate. Therm. Sci. Eng. Prog. 37, 101584 (2023). https://doi.org/10.1016/j.tsep.2022.101584

    Article  Google Scholar 

  30. Kumar, K.A.; Sugunamma, V.; Sandeep, N.; Mustafa, M.T.: Simultaneous solutions for frst order and second order slips on micropolar fuid fow across a convective surface in the presence of Lorentz force and variable heat source/sink. Sci. Rep. 9, 14706 (2019). https://doi.org/10.1038/s41598-019-51242-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Su, J.: Suitable weak solutions to the micropolar fluids model in a bounded domain. J. Math. Anal. Appl. 504, 125406 (2021). https://doi.org/10.1016/j.jmaa.2021.125406

    Article  MathSciNet  Google Scholar 

  32. Slayi, S.; Arwadi, T.E.; Dib, S.: Stabilized Gauge Uzawa scheme for an incompressible micropolar fluid flow. Appl. Numer. Math. 167, 45–72 (2021). https://doi.org/10.1016/j.apnum.2021.04.003

    Article  MathSciNet  Google Scholar 

  33. Sherief, H.H.; Faltas, M.S.; Ragab, K.E.: Motion of a slip spherical particle near a planar micropolar-viscous interface. Eur. J. Mech. B Fluids 89, 274–288 (2021). https://doi.org/10.1016/j.euromechflu.2021.06.004

    Article  MathSciNet  ADS  Google Scholar 

  34. Habib, U.; Abdal, S.; Siddique, I.; Ali, R.: A comparative study on micropolar, Williamson, Maxwell nanofluids flow due to a stretching surface in the presence of bioconvection, double diffusion and activation energy. Int. Commun. Heat Mass Transf. 127, 105551 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105551

    Article  CAS  Google Scholar 

  35. Rees, D.A.S.; Pop, I.: Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate. IMA J. Appl. Math. 61, 179–197 (1998). https://doi.org/10.1093/imamat/61.2.179

    Article  MathSciNet  ADS  Google Scholar 

  36. Cortell, R.: Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372, 631–636 (2008). https://doi.org/10.1016/j.physleta.2007.08.005

    Article  CAS  ADS  Google Scholar 

  37. Nayak, M.K.; Hakeem, A.K.; Abdul, A.K.; Makinde, O.D.: Time varying chemically reactive magneto-hydrodynamic non-linear falkner-skan flow over a permeable stretching/shrinking wedge: Buongiorno model. Journal of Nanofluids 8(3), 467–476 (2019)

    Article  Google Scholar 

  38. Hashim, M.; Khan, A.S.: Alshomrani, Numerical simulation for flow and heat transfer to Carreau fluid with magnetic field effect: dual nature study. J. Magn. Magn. Mater. 443, 13–21 (2017)

    Article  CAS  ADS  Google Scholar 

  39. Rosseland, S.: Astrophysik: Auf Atomtheoretischer Grundlage. Springer, Berlin (1931)

    Book  Google Scholar 

  40. Ishak, A.; Yacob, N.A.; Bachok, N.: Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica 46, 795–801 (2011). https://doi.org/10.1007/s11012-010-9338-4

    Article  MathSciNet  Google Scholar 

  41. Magyari, E.; Pantokratoras, A.: Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int. Commun. Heat Mass Transf. 38, 554–556 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.03.006

    Article  Google Scholar 

  42. Blottner, F.G.: Finite difference methods of solution of the boundary-layer equations. AIAA J. 8(2), 193–205 (1970). https://doi.org/10.2514/3.5642

    Article  MathSciNet  ADS  Google Scholar 

  43. Takhar, H.S.; Soundalgekar, V.M.: Flow and heat transfer of a micropolar fluid past a continuously moving porous plate. Int. J. Eng. Sci. 23(2), 201–205 (1985). https://doi.org/10.1016/0020-7225(85)90074-6

    Article  Google Scholar 

  44. Jena, S.K.; Mathur, M.N.: Free convection in the laminar boundary layer flow of a thermomicropolar fluid past a vertical flat plate with suction/injection. Acta Mech. 42, 227–238 (1982). https://doi.org/10.1007/BF01177194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nepal Chandra Roy.

Ethics declarations

Conflict of interest

The authors announce that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, N.C., Ghosh, A. & Pop, I. Magnetohydrodynamic Micropolar Nanofluid Flow in a Shrinking Channel with Second-Order Velocity Slip and Thermal Radiation. Arab J Sci Eng 49, 1955–1967 (2024). https://doi.org/10.1007/s13369-023-08011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08011-4

Keywords

Navigation