Skip to main content
Log in

Hydraulic and thermal analysis of automatic transmission fluid in the presence of nano-particles and twisted tape: An experimental and numerical study

纳米颗粒和扭曲带条件下自动传动流体的液压和热分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the present study, hydraulic and thermal behavior of an automatic transmission nano-fluid (ATNF) inside a tube with a twisted tape has been investigated. The heat transfer improvement and pressure drop of transmission oil for each of case of using twisted tape and nano-particles were also examined separately and compared with each other. The CuO nano-particles were used to prepare the ATNF. The effects of different Reynolds numbers and different mass fractions of nano-particle were investigated. The results showed that applying nano-particles and twisted tape simultaneously increases both the pressure drop and Nusselt number, on average by about 53% and 76%, respectively. By using a parameter, namely thermal performance index η, the effect of increasing heat transfer and pressure drop was studied simultaneously. The heat transfer improvement predominates the pressure drop increment in all cases. It was observed that the highest thermal performance of 1.9 was obtained at Re=634 and ϕ =2%. Furthermore, regarding the increment of the Nu number, it was shown that the use of twisted tapes individually could increase the average Nu number by 41%, while the max increment arising from individual use of 2% nano-particles is 13%, so using twisted tape is a more effective-technique for this case study.

摘要

研究了带有扭曲带的管内自动传动纳米流体(ATNF)的液压和热行为。并分别对扭曲带和纳米颗粒两种情况下传动油的换热效果和压降进行了研究和比较。利用CuO 纳米颗粒制备自动传动纳米流体。研究了不同雷诺数和不同质量分数纳米粒子的影响。结果表明,同时应用纳米粒子和扭带,压降和Nu数平均增加约为53% 和76%。采用热性能指标η,同时研究了提高传热和压降的效果。在所有情况下,传热的提升比压降更明显。在Re=634 和ϕ=2% 时,观察到最高的热性能为1.9。此外,单独使用扭曲带可以使Nu数提高41%,而单独使用2% 的纳米粒子时的最大增量为13%,所以使用扭曲带更有效。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

Specific heat, J·kg−1·K−1

d :

Tube diameter, m

D :

Width of twisted tape, m

h :

Convective heat transfer coefficient, W·m−2·K−1

H :

length of each twisted tape turn, m

H*=H/D :

Twist ratio

k :

Thermal conductivity, W · m−1 · K−1

L :

Tube length, m

l :

Length of the twisted tape, m

Nu :

Nusselt number

Re :

Reynolds number

T :

Temperature, K

V :

Velocity, m · s−1

Δp :

pressure drop, Pa

f :

Friction factor

Pr :

Prandtl number

BaseGeom:

Base geometry (tube without twisted tape)

B.F.:

Base fluid (fluid without nan particles)

TW.:

Twisted tape

N.F.:

Nanofluid

Num.:

Numerical

temp:

Temperature

Exp.:

Experimental

ave:

Average

bf:

Base fluid

nf:

Nanofluid

p:

particle

μ :

Dynamic viscosity, Pa·s

ϕ :

Nanoparticle mass fraction, %

ρ :

Density, kg·m−3

η :

Thermal performance factor

References

  1. ALI H M. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems — A comprehensive review [J]. Solar Energy, 2020, 197: 163–198. DOI: https://doi.org/10.1016/j.solener.2019.11.075.

    Article  Google Scholar 

  2. TALESH BAHRAMI H R, AMINIAN E, SAFFARI H. Energy transfer enhancement inside an annulus using gradient porous ribs and nanofluids [J]. Journal of Energy Resources Technology, 2020, 142(12): 122102. DOI: https://doi.org/10.1115/1.4047312.

    Article  Google Scholar 

  3. ABRAR M N, SAGHEER M, HUSSIAN S. Entropy analysis of SWCNT MWCNT flow induced by collecting beating of cilia with porous medium [J]. Journal of Central South University, 2019, 26(8): 2109–2118. DOI: https://doi.org/10.1007/s11771-019-4158-8.

    Article  Google Scholar 

  4. MALEKI H, ALSARRAF J, MOGHANIZADEH A, HAJABDOLLAHI H, SAFAEI M R. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions [J]. Journal of Central South University, 2019, 26(5): 1099–1115. DOI: https://doi.org/10.1007/s11771-019-4074-y.

    Article  Google Scholar 

  5. GUPTA M, SINGH V, KUMAR R, SAID Z. A review on thermophysical properties of nanofluids and heat transfer applications [J]. Renewable and Sustainable Energy Reviews, 2017, 74: 638–670. DOI: https://doi.org/10.1016/j.rser.2017.02.073.

    Article  Google Scholar 

  6. LÉAL L, MISCEVIC M, LAVIEILLE P, AMOKRANE M, PIGACHE F, TOPIN F, NOGARÈDE B, TADRIST L. An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials [J]. International Journal of Heat and Mass Transfer, 2013, 61: 505–524. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.083.

    Article  Google Scholar 

  7. LOTFI R, SABOOHI Y, RASHIDI A M. Numerical study of forced convective heat transfer of nanofluids: Comparison of different approaches [J]. International Communications in Heat and Mass Transfer, 2010, 37(1): 74–78. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2009.07.013.

    Article  Google Scholar 

  8. CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [C]// ASME Int Mech Eng Congr Expo, 1995: 99–105. https://www.osti.gov/servlets/purl/196525.

  9. CHU Wen-xiao, TSAI C A, LEE B H, CHENG K Y, WANG Chi-chuan. Experimental investigation on heat transfer enhancement with twisted tape having various V-cut configurations [J]. Applied Thermal Engineering, 2020, 172: 115148. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115148.

    Article  Google Scholar 

  10. HE Wei, TOGHRAIE D, LOTFIPOUR A, POURFATTAH F, KARIMIPOUR A, AFRAND M. Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube [J]. International Communications in Heat and Mass Transfer, 2020, 110: 104440. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2019.104440.

    Article  Google Scholar 

  11. YANG Liu, DU Kai, ZHANG Xiao-song. Influence factors on thermal conductivity of ammonia-water nanofluids [J]. Journal of Central South University, 2012, 19(6): 1622–1628.

    Article  Google Scholar 

  12. SURESH S, CHANDRASEKAR M, SELVAKUMAR P. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube [J]. Heat and Mass Transfer, 2012, 48(4): 683–694. DOI: https://doi.org/10.1007/s00231-011-0917-2.

    Article  Google Scholar 

  13. TENG T P, HUNG Y H. Estimation and experimental study of the density and specific heat for alumina nanofluid [J]. Journal of Experimental Nanoscience, 2014, 9(7): 707–718. DOI: https://doi.org/10.1080/17458080.2012.696219.

    Article  Google Scholar 

  14. PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [J]. Experimental Heat Transfer, 1998, 11(2): 151–170. DOI: https://doi.org/10.1080/08916159808946559.

    Article  Google Scholar 

  15. de ROBERTIS E, COSME E H H, NEVES R S, KUZNETSOV A Y, CAMPOS A P C, LANDI S M, ACHETE C A. Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids [J]. Applied Thermal Engineering, 2012, 41: 10–17. DOI: https://doi.org/10.1016/j.applthermaleng.2012.01.003.

    Article  Google Scholar 

  16. KUMAR V, SARKAR J. Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance [J]. Applied Thermal Engineering, 2020, 165: 114546. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114546.

    Article  Google Scholar 

  17. SETOODEH H, KESHAVARZ A, GHASEMIAN A, NASOUHI A. Subcooled flow boiling of alumina/water nanofluid in a channel with a hot spot: An experimental study [J]. Applied Thermal Engineering, 2015, 90: 384–394. DOI: https://doi.org/10.1016/j.applthermaleng.2015.07.016.

    Article  Google Scholar 

  18. HAYAT T, AHMED B, ABBASI F M, ALSAEDI A. Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects [J]. Journal of Central South University, 2019, 26(9): 2543–2553. DOI: https://doi.org/10.1007/s11771-019-4193-5.

    Article  Google Scholar 

  19. KOLE M, DEY T K. Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids [J]. International Journal of Thermal Sciences, 2011, 50(9): 1741–1747. DOI: https://doi.org/10.1016/j.ijthermalsci.2011.03.027.

    Article  Google Scholar 

  20. SURESH S, VENKITARAJ K P, SELVAKUMAR P, CHANDRASEKAR M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388(1-3): 41–48. DOI: https://doi.org/10.1016/j.colsurfa.2011.08.005.

    Article  Google Scholar 

  21. HE Yan, LIU Li, LI Peng-xiao, MA Lian-xiang. Experimental study on heat transfer enhancement characteristics of tube with cross hollow twisted tape inserts [J]. Applied Thermal Engineering, 2018, 131: 743–749. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.029.

    Article  Google Scholar 

  22. VANAKI S M, GANESAN P, MOHAMMED H A. Numerical study of convective heat transfer of nanofluids: A review [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1212–1239. DOI: https://doi.org/10.1016/j.rser.2015.10.042.

    Article  Google Scholar 

  23. CAO Yan, BAI Yu, DU Jiang, RASHIDI S. A computational fluid dynamics investigation on the effect of the angular velocities of hot and cold turbulator cylinders on the heat transfer characteristics of nanofluid flows within a porous cavity [J]. Journal of Energy Resources Technology, 2020, 142(11): 112104. DOI: https://doi.org/10.1115/1.4047253.

    Article  Google Scholar 

  24. MIRZAEYAN M, TOGHRAIE D. Numerical investigation of laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders [J]. Journal of Central South University, 2019, 26(7): 1976–1999. DOI: https://doi.org/10.1007/s11771-019-4146-z.

    Article  Google Scholar 

  25. HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems [J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191. DOI: https://doi.org/10.1021/i160003a005.

    Article  Google Scholar 

  26. YANG Liu, XU Xin-yi. A renovated Hamilton-Crosser model for the effective thermal conductivity of CNTs nanofluids [J]. International Communications in Heat and Mass Transfer, 2017, 81: 42–50. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2016.12.010.

    Article  Google Scholar 

  27. SAMI S. Analysis of nanofluids behavior in a PV-thermal-driven organic Rankine cycle with cooling capability [J]. Applied System Innovation, 2020, 3(1): 12. DOI: https://doi.org/10.3390/asi3010012.

    Article  Google Scholar 

  28. MUNYALO J M, ZHANG Xue-lai, XU X. Experimental investigation on supercooling, thermal conductivity and stability of nanofluid based composite phase change material [J]. Journal of Energy Storage, 2018, 17: 47–55. DOI: https://doi.org/10.1016/j.est.2018.02.006.

    Article  Google Scholar 

  29. SIAVASHI M, GHASEMI K, YOUSOFVAND R, DERAKHSHAN S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet [J]. Solar Energy, 2018, 170: 252–262. DOI: https://doi.org/10.1016/j.solener.2018.05.020.

    Article  Google Scholar 

  30. ZHENG Yuan-zhou, WANG Shuai-qi, D’ORAZIO A, KARIMIPOUR A, AFRAND M. Forecasting and optimization of the viscosity of nano-oil containing zinc oxide nanoparticles using the response surface method and sensitivity analysis [J]. Journal of Energy Resources Technology, 2020, 142(11): 113004. DOI: https://doi.org/10.1115/1.4047257.

    Article  Google Scholar 

  31. RAMADHAN AL-OBAIDI A, CHAER I. Study of the flow characteristics, pressure drop and augmentation of heat performance in a horizontal pipe with and without twisted tape inserts [J]. Case Studies in Thermal Engineering, 2021, 25: 100964. DOI: https://doi.org/10.1016/j.csite.2021.100964.

    Article  Google Scholar 

  32. SIAVASHI M, JAMALI M. Erratum to: Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow [J]. Journal of Central South University, 2017, 24(10): 2486. DOI: https://doi.org/10.1007/s11771-017-3593-7.

    Article  Google Scholar 

  33. LI Zhi-xiong, D’ORAZIO A, KARIMIPOUR A, BACH Q V. Thermo-hydraulic performance of a lubricant containing zinc oxide nano-particles: A two-phase oil [J]. Journal of Energy Resources Technology, 2020, 142(11): 112107. DOI: https://doi.org/10.1115/1.4047256.

    Article  Google Scholar 

  34. REZAEI GORJAEI A, SHAHIDIAN A. Heat transfer enhancement in a curved tube by using twisted tape insert and turbulent nanofluid flow [J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(3): 1059–1068. DOI: https://doi.org/10.1007/s10973-019-08013-1.

    Article  Google Scholar 

  35. ALEMPOUR S M, ABBASIAN ARANI A A, NAJAFIZADEH M M. Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1237–1257. DOI: https://doi.org/10.1007/s10973-020-09337-z.

    Article  Google Scholar 

  36. AL-OBAIDI A R, SHARIF A. Investigation of the three-dimensional structure, pressure drop, and heat transfer characteristics of the thermohydraulic flow in a circular pipe with different twisted-tape geometrical configurations [J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(5): 3533–3558. DOI: https://doi.org/10.1007/s10973-019-09244-y.

    Article  Google Scholar 

  37. POURFATTAH F, SABZPOOSHANI M, TOGHRAIE D, ASADI A. Correction to: On the optimization of a vertical twisted tape arrangement in a channel subjected to MWCNT-water nanofluid by coupling numerical simulation and genetic algorithm [J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(1): 203. DOI: https://doi.org/10.1007/s10973-020-09490-5.

    Article  Google Scholar 

  38. SAMRUAISIN P, KUNNARAK K, CHUWATTANAKUL V, EIAMSA-ARD S. Effect of sparsely placed twisted tapes installed with multiple-transverse twisted-baffles on heat transfer enhancement [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1159–1175. DOI: https://doi.org/10.1007/s10973-019-09202-8.

    Article  Google Scholar 

  39. SIAVASHI M, MIRI JOIBARY S M. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(2): 1595–1610. DOI: https://doi.org/10.1007/s10973-018-7829-z.

    Article  Google Scholar 

  40. HASANPOUR A, FARHADI M, SEDIGHI K. Intensification of heat exchangers performance by modified and optimized twisted tapes [J]. Chemical Engineering and Processing-Process Intensification, 2017, 120: 276–285. DOI: https://doi.org/10.1016/j.cep.2017.07.026.

    Article  Google Scholar 

  41. YOUNG G, KARIMI N, MACKENZIE R. Numerical modeling of subcooled flow boiling and heat transfer enhancement: Validation and applicability to fusion reactor target design [J]. Journal of Energy Resources Technology, 2020, 142(11): 112105. DOI: https://doi.org/10.1115/1.4047254.

    Article  Google Scholar 

  42. ZHENG Lu, XIE Yong-hui, ZHANG Di. Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid [J]. International Journal of Heat and Mass Transfer, 2017, 111: 962–981. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.062.

    Article  Google Scholar 

  43. RAKHSHA M, AKBARIDOUST F, ABBASSI A, MAJID S A. Experimental and numerical investigations of turbulent forced convection flow of nano-fluid in helical coiled tubes at constant surface temperature [J]. Powder Technology, 2015, 283: 178–189. DOI: https://doi.org/10.1016/j.powtec.2015.05.019.

    Article  Google Scholar 

  44. ALBOJAMAL A, VAFAI K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport [J]. International Journal of Heat and Mass Transfer, 2017, 114: 225–237. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.030.

    Article  Google Scholar 

  45. COLEMAN H W, STEELE W G. Experimentation, validation, and uncertainty analysis for engineers [M]. New Jersey: Wiley, 2018. DOI: https://doi.org/10.1002/9781119417989.

    Book  Google Scholar 

  46. MAÏGA S E B, PALM S J, NGUYEN C T, ROY G, GALANIS N. Heat transfer enhancement by using nanofluids in forced convection flows [J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 530–546. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004.

    Article  Google Scholar 

  47. TURGUT A, TAVMAN I, CHIRTOC M, SCHUCHMANN H P, SAUTER C, TAVMAN S. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids [J]. International Journal of Thermophysics, 2009, 30(4): 1213–1226. DOI: https://doi.org/10.1007/s10765-009-0594-2.

    Article  Google Scholar 

  48. MURSHED S M S, LEONG K C, YANG C. Investigations of thermal conductivity and viscosity of nanofluids [J]. International Journal of Thermal Sciences, 2008, 47(5): 560–568. DOI: https://doi.org/10.1016/j.ijthermalsci.2007.05.004.

    Article  Google Scholar 

  49. KRIEGER I M, DOUGHERTY T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres [J]. Transactions of the Society of Rheology, 1959, 3(1): 137–152. DOI: https://doi.org/10.1122/1.548848.

    Article  MATH  Google Scholar 

  50. NIELSEN L E. Generalized equation for the elastic moduli of composite materials [J]. Journal of Applied Physics, 1970, 41(11): 4626–4627. DOI: https://doi.org/10.1063/1.1658506.

    Article  Google Scholar 

  51. BATCHELOR G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles [J]. Journal of Fluid Mechanics, 1977, 83(1): 97–117. DOI: https://doi.org/10.1017/s0022112077001062.

    Article  MathSciNet  Google Scholar 

  52. TIMOFEEVA E V, GAVRILOV A N, MCCLOSKEY J M, TOLMACHEV Y V, SPRUNT S, LOPATINA L M, SELINGER J V. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory [J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(6Pt1): 061203. DOI: https://doi.org/10.1103/PhysRevE.76.061203.

    Article  Google Scholar 

  53. MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2—water based nanofluids [J]. International Journal of Thermal Sciences, 2005, 44(4): 367–373. DOI: https://doi.org/10.1016/j.ijthermalsci.2004.12.005.

    Article  Google Scholar 

  54. HASSANI S, SAIDUR R, MEKHILEF S, HEPBASLI A. A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis [J]. International Journal of Heat and Mass Transfer, 2015, 90: 121–130. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.040.

    Article  Google Scholar 

  55. ESMAEILZADEH E, ALMOHAMMADI H, NOKHOSTEEN A, MOTEZAKER A, OMRANI A N. Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube with twisted tape inserts with different thicknesses [J]. International Journal of Thermal Sciences, 2014, 82: 72–83. DOI: https://doi.org/10.1016/j.ijthermalsci.2014.03.005.

    Article  Google Scholar 

  56. HASHEMI S M, AKHAVAN-BEHABADI M A. An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux [J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 144–151. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2011.09.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ali QASEMIAN: Supervision, writing-reviewing and editing. Faranak MORADI: Investigation, methodology, numerical simulation, writing original draft. Amin KARAMATI: Experimental setup and investigation. ALI KESHAVARZ: Supervision. Amin SHAKERI: Numerical simulation, writing-editing.

Corresponding author

Correspondence to Ali Qasemian.

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasemian, A., Moradi, F., Karamati, A. et al. Hydraulic and thermal analysis of automatic transmission fluid in the presence of nano-particles and twisted tape: An experimental and numerical study. J. Cent. South Univ. 28, 3404–3417 (2021). https://doi.org/10.1007/s11771-021-4864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4864-x

Key words

关键词

Navigation