Skip to main content

Advertisement

Log in

Chloramphenicol Removal from Aqueous Solution Using Sodium Bicarbonate-Impregnated Coconut Husk-Derived Activated Carbon: Optimization and Insight Mechanism Study

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The increasing presence of chloramphenicol (CAP) in aquatic environments each year has led to serious concerns regarding potential adverse effects on human health, the environment, and aquatic organisms. If CAP residues are not sufficiently removed during wastewater treatment, they can migrate into the aquatic environment and eventually end up in the food chain. Therefore, the removal of CAP from river bodies is of great importance. In this research study, a novel sodium bicarbonate (NaHCO3)-impregnated coconut husk-activated carbon (CHAC) was developed through an impregnation method for CAP removal. The introduction of NaHCO3 on the CHAC surfaces results in the formation of OH– and H2O functional groups. The presence of a hydroxyl group appears mainly due to the water molecules found in the middle layer of the adsorbent and might be due to the water molecules that are physically adsorbed. This suggests that OH– groups found on the outer layer of the NaHCO3-impregnated CHAC are the main contributors to the removal of CAP through chemical interaction and electrostatic attraction. Based on the response surface methodology approach, the best preparation conditions for activation temperature, activation time, and IR were identified to be 500 ℃, 1 h, and 0.5, respectively. The optimized CHAC was found to be homogeneous and had a mesoporous type of pores with a BET surface area of 438.2 m2/g. In the batch adsorption study, the uptake of CAP onto CHAC increased as both the initial concentration of CAP and contact time increased. In terms of the effect of solution pH, CAP removal was highest at pH 2 and lowest at pH 13. The Langmuir isotherm and pseudo-first-order (PFO) kinetic were the best-fitted models for CAP adsorption. Besides, the adsorption process was mainly governed by the film diffusion mechanism. Based on the thermodynamic study, CAP adsorption onto CHAC was found to be exothermic in nature and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Praveena, S.; Mohd Rashid, M.; Mohd Nasir, F.; Sze Yee, W.; Aris, A.: Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicol. Environ. Saf. 180, 549–556 (2019)

    Article  Google Scholar 

  2. Praveena, S.; Shaifuddin, S.; Sukiman, S.; Nasir, F.; Hanafi, Z.; Kamarudin, N.; Ismail, T.; Aris, A.H.: Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): occurrence and potential risk assessments. Sci. Total Environ. 642, 230–240 (2018)

    Article  Google Scholar 

  3. Mokni, S.; Tlili, M.; Jedidi, N.; Hassen, A.: Applicability of electrocoagulation process to the treatment of Ofloxacin and Chloramphenicol in aqueous media: removal and mechanism and antibacterial activity. J Water Process Eng. 49, 103080 (2022)

    Article  Google Scholar 

  4. Kurt, A.; Mert, B.; Özengin, N.; Sivrioğlu, Ö.; Yonar, T.: Treatment of antibiotics in wastewater using advanced oxidation processes (AOPs). Phys. Chem. Wastewater Treat. Resour. Recov. 175 (2017)

  5. Hashim, N.; Nasir, M.; Ramlee, M.: Emerging pollutant of concern: occurrence of pharmaceutical compounds in Asia with particular preference to southeast Asia countries. MATEC Web Conf. 47, 05026 (2016)

    Article  Google Scholar 

  6. Othman, A.; Ariffin, M.: Source water protection from pharmaceutical contaminants: assessment of environmental quality act 1974 and its regulations. Plan. Malays. 17, 168–176 (2019)

    Google Scholar 

  7. Al-Odaini, N.; Zakaria, M.; Yaziz, M.; Surif, S.; Abdulghani, M.: The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. Int. J. Environ. Anal. Chem. 93, 245–264 (2013)

    Article  Google Scholar 

  8. Agüera, A.; Martínez Bueno, M.; Fernández-Alba, A.: New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters. Environ. Sci. Pollut. Res. 20, 3496–3515 (2013)

    Article  Google Scholar 

  9. Kümmerer, K.: The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. J. Environ. Manag. 90, 2354–2366 (2009)

    Article  Google Scholar 

  10. Ennori, R.; Lavecchi, R.; Zuorro, A.; Elaoud, S.C.; Petrucci, E.: Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation. J. Water Process Eng. 41, 101995 (2021)

    Article  Google Scholar 

  11. Balbi, H.: Chloramphenicol: A Review. Pediatr. Rev. 25, 284–288 (2004)

    Article  Google Scholar 

  12. Dasgupta, A.: Advances in antibiotic measurement. Adv. Clin. Chem. 56, 75–104 (2012)

    Article  Google Scholar 

  13. Commission, E.: Commission decision 2003/181/EC of 13 March 2003. Off. J. Eur. Commun. 71, 17–18 (2003)

    Google Scholar 

  14. Zhou, C.; Zhang, X.; Huang, X.; Guo, X.; Cai, Q.; Zhu, S.: Rapid detection of chloramphenicol residues in aquatic products using colloidal gold immunochromatographic assay. Sensors 14, 21872–21888 (2014)

    Article  Google Scholar 

  15. Liu, H.; Zhang, G.; Liu, C.; Li, L.; Xiang, M.: The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China. J. Environ. Monit. 11, 1199 (2009)

    Article  Google Scholar 

  16. Tahrani, L.; Van Loco, J.; Ben Mansour, H.; Reyns, T.: Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia. J. Water Health 14, 208–213 (2015)

    Article  Google Scholar 

  17. Xiao, L.; Liu, F.; Kumar, P.; Wei, Y.; Liu, J.; Han, D.; Shan, S.; Wang, X.; Dang, R.; Yu, J.: Rapid removal of chloramphenicol via the synergy of Geobacter and metal oxide nanoparticles. Chemosphere 286, 131943 (2022)

    Article  Google Scholar 

  18. Ebele, A.; Abou-Elwafa Abdallah, M.; Harrad, S.: Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3, 1–16 (2017)

    Article  Google Scholar 

  19. Yusop, M.F.M.; Aziz, A.; Ahmad, M.A.: Conversion of teak wood waste into microwave-irradiated activated carbon for cationic methylene blue dye removal: optimization and batch studies. Arab. J. Chem. 15(9), 104081 (2022)

    Article  Google Scholar 

  20. Zubair, M.; Aziz, H.; Ihsanullah, I.; Ahmad, M.; Al-Harthi, M.: Biochar supported CuFe layered double hydroxide composite as a sustainable adsorbent for efficient removal of anionic azo dye from water. Environ. Technol. Innov. 23, 101614 (2021)

    Article  Google Scholar 

  21. Ogungbenro, A.; Quang, D.; Al-Ali, K.; Vega, L.; Abu-Zahra, M.: Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. J. Environ. Chem. Eng. 8, 104257 (2020)

    Article  Google Scholar 

  22. Mohamad Yusop, M.F.; Tamar Jaya, M.A.; Idris, I.; Abdullah, A.Z.; Ahmad, M.A.: Optimization and mass transfer simulation of remazol brilliant blue R dye adsorption onto meranti wood based activated carbon. Arab. J. Chem. 16, 104683 (2023)

    Article  Google Scholar 

  23. Blachnio, M.; Derylo-Marczewska, A.; Charmas, B.; Zienkiewicz-Strzalka, M.; Bogatyrov, V.; Galaburda, M.: Activated carbon from agricultural wastes for adsorption of organic pollutants. Molecules 25, 5105 (2020)

    Article  Google Scholar 

  24. Yusop, M.F.M.; Jaya, E.M.J.; Din, A.T.M.; Bello, O.S.; Ahmad, M.A.: Single-stage optimized microwave-induced activated carbon from coconut shell for cadmium adsorption. Chem. Eng. Technol. 45, 1943–1951 (2022)

    Article  Google Scholar 

  25. Ahmad, M.A.; Eusoff, M.A.; Oladoye, P.O.; Adegoke, K.A.; Bello, O.S.: Optimization and batch studies on adsorption of Methylene blue dye using pomegranate fruit peel-based adsorbent. Chem. Data Collect. 32, 10067 (2021)

    Article  Google Scholar 

  26. Khasri, A.; Ahmad, M.A.: Adsorption of basic and reactive dyes from aqueous solution onto Intsia bijuga sawdust-based activated carbon: batch and column study. Environ. Sci. Pollut. Res. 25, 31508–31519 (2018)

    Article  Google Scholar 

  27. Pandiarajan, A.; Kamaraj, R.; Vasudevan, S.; Vasudevan, S.: OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Biores. Technol. 261, 329–341 (2018)

    Article  Google Scholar 

  28. Ahmad, A.A.; Ahmad, M.A.; Yahaya, N.K.E.M.; Karim, J.: Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arab. J. Chem. 14(4), 103104 (2021)

    Article  Google Scholar 

  29. Sheha, D.; Khalaf, H.; Daghestani, N.: Experimental design methodology for the preparation of activated carbon from sewage sludge by chemical activation process. Arab. J. Sci. Eng. 38, 2941–2951 (2012)

    Article  Google Scholar 

  30. Yusop, M.F.M.; Ahmad, M.A.; Rosli, N.A.; Gonawan, F.N.; Abdullah, S.J.: Scavenging malachite green dye from aqueous solution using durian peel based activated carbon. Malays. J. Fundam. Appl. Sci. 17, 95–103 (2021)

    Article  Google Scholar 

  31. Ahmad, M.A.; Ahmed, N.B.; Adegoke, K.A.; Bello, O.S.: Adsorptive potentials of lemongrass leaf for methylene blue dye removal. Chem. Data Collect. 31, 100578 (2021)

    Article  Google Scholar 

  32. Kamaraj, R.; Vasudevan, S.: Decontamination of selenate from aqueous solution by oxidized multi-walled carbon nanotubes. Powder Technol. 274, 268–275 (2015)

    Article  Google Scholar 

  33. Ganesan, P.; Kamaraj, R.; Vasudevan, S.: Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J. Taiwan Inst. Chem. Eng. 44, 808–814 (2013)

    Article  Google Scholar 

  34. Ganesan, P.; Kamaraj, R.; Sozhan, G.; Vasudevan, S.: Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution. Environ. Sci. Pollut. Res. 20, 987–996 (2013)

    Article  Google Scholar 

  35. Kamaraj, R.; Pandiarajan, A.; Gandhi, M.R.; Shibayama, A.; Vasudevan, S.: Eco-friendly and easily prepared graphene nanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides. Chem. Select. 2, 342–355 (2017)

    Google Scholar 

  36. Vasudevan, S.; Lakshimi, J.: The adsorption of phosphate by graphene from aqueous solution. RSC Adv. 2, 5234–5242 (2012)

    Article  Google Scholar 

  37. Zhang, R.; Zhou, Z.; Xie, A.; Dai, J.; Cui, J.; Lang, J.; Wei, M.; Dai, X.; Li, C.; Yan, Y.: Preparation of hierarchical porous carbons from sodium carboxymethyl cellulose via halloysite template strategy coupled with KOH-activation for efficient removal of chloramphenicol. J. Taiwan Inst. Chem. Eng. 80, 424–433 (2017)

    Article  Google Scholar 

  38. Xue, Z.; Wen, J.; Yang, C.; Yuan, L.; Yin, X.; Li, Y.: Efficient removal of chloramphenicol by K2CO3 activated porous carbon derived from cigarette butts. Biomass Convers. Bioref. (2022). https://doi.org/10.1007/s13399-022-02515-z

    Article  Google Scholar 

  39. Van Tran, T.; Thi Cam Nguyen, D.; Le Thi Ngoc, H.; Loc Ho, H.; Thanh Nguyen, T.; Doan, V.-D.; Duy Nguyen, T.; Giang Bach, L.: Response surface methodology-optimized removal of chloramphenicol pharmaceutical from wastewater using Cu3(BTC)2-derived porous carbon as an efficient adsorbent. Camptes Rendus Chimie 22, 794–803 (2019)

    Article  Google Scholar 

  40. Wang, G.; Yong, X.; Luo, L.; Yan, S.; Wong, J.W.C.; Zhou, J.: Structure-performance correlation of high surface area and hierarchical porous biochars as chloramphenicol adsorbents. Sep. Purif. Technol. 296, 121374 (2022)

    Article  Google Scholar 

  41. Xing, W.; Liu, Q.; Wang, J.; Xia, S.; Ma, L.; Lu, R.; Zhang, Y.; Huang, Y.; Wu, G.: High selectivity and reusability of biomass-based adsorbent for chloramphenicol removal. Nanomaterials 11, 2950 (2021)

    Article  Google Scholar 

  42. Li, Y.; Zhang, J.; Liu, H.: Removal of chloramphenicol from aqueous solution using low-cost activated carbon prepared from Typha orientalis. Water 10, 351 (2018)

    Article  Google Scholar 

  43. Lach, J.; Ociepa-Kubicka, A.: The removal of chloramphenicol from water through adsorption on activated carbon. E3S Web Conf. 19, 02008 (2017)

    Article  Google Scholar 

  44. Lach, J.: Adsorption of chloramphenicol on commercial and modified activated carbons. Water 11, 1141 (2019)

    Article  Google Scholar 

  45. Yim, S.; Chan, Y.; Yusup, S.; Johari, K.; Quitain, A.; Dailin, D.: Supercritical extraction of value-added compounds from empty fruit bunch: an optimization study by response surface methodology. Adv. Feedstock Convers. Technol. Altern. Fuels Bioprod. 281–298 (2019)

  46. Yusop, M.F.M.; Jaya, E.M.J.; Ahmad, M.A.: Single-stage microwave assisted coconut shell based activated carbon for removal of Zn(II) ions from aqueous solution—optimization and batch studies. Arab. J. Chem. 15, 104011 (2022)

    Article  Google Scholar 

  47. Hidayu, A.; Muda, N.: Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Proc. Eng. 148, 106–113 (2016)

    Article  Google Scholar 

  48. Feng, P.; Li, J.; Wang, H.; Xu, Z.: Biomass-based activated carbon and activators: preparation of activated carbon from corncob by chemical activation with biomass pyrolysis liquids. ACS Omega 5, 24064–24072 (2020)

    Article  Google Scholar 

  49. Ravichandran, P.; Sugumaran, P.; Seshadri, S.; Basta, A.H.: Optimizing the route for production of activated carbon from casuarina equisetifolia fruit waste. R Soc Open Sci 5, 171578 (2018)

    Article  Google Scholar 

  50. Figueroa Campos, G.; Perez, J.; Block, I.; Sagu, S.; Saravia Celis, P.; Taubert, A.; Rawel, H.: Preparation of activated carbons from spent coffee grounds and coffee parchment and assessment of their adsorbent efficiency. Processes 9, 1396 (2021)

    Article  Google Scholar 

  51. Mohamad Yusop, M.F.; Nasehir Khan, M.N.; Zakaria, R.; Abdullah, A.Z.; Ahmad, M.A.: Mass transfer simulation on remazol brilliant blue R dye adsorption by optimized teak wood based activated carbon. Arab. J. Chem. 16, 104780 (2023)

    Article  Google Scholar 

  52. Maulina, S.; Iriansyah, M.: Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. IOP Conf. Ser. Mater. Sci. Eng. 309, 012072 (2018)

    Article  Google Scholar 

  53. Li, Y.; Du, Q.; Wang, X.; Zhang, P.; Wang, D.; Wang, Z.; Xia, Y.: Removal of lead from aqueous solution by activated carbon prepared from enteromorpha prolifera by zinc chloride activation. J. Hazard. Mater. 183, 583–589 (2010)

    Article  Google Scholar 

  54. Uddin, M.; Rahman, M.; Rukanuzzaman, M.; Islam, M.: A potential low-cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl. Water Sci. 7, 2831–2842 (2017)

    Article  Google Scholar 

  55. Tran, T.; Nguyen, D.; Le, H.; Ho, H.; Nguyen, T.; Doan, V.; Nguyen, T.; Bach, L.: Response surface methodology-optimized removal of chloramphenicol pharmaceutical from wastewater using Cu3(BTC)2-derived porous carbon as an efficient adsorbent. C. R. Chim. 22, 794–803 (2019)

    Article  Google Scholar 

  56. Chitongo, R.; Opeolu, B.; Olatunji, O.: Abatement of amoxicillin, ampicillin, and chloramphenicol from aqueous solutions using activated carbon prepared from grape slurry. CLEAN Soil Air Water 47, 1800077 (2018)

    Article  Google Scholar 

  57. Horsfall Jnr, M.; Spiff, A.: Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by caladium bicolor (wild cocoyam) biomass. Electron. J. Biotechnol. 8, 162–169 (2005)

    Article  Google Scholar 

  58. Bocos, E.; Alfaya, E.; Iglesias, O.; Pazos, M.; Ángeles Sanromán, M.: Application of a new sandwich of granular activated and fiber carbon as cathode in the electrochemical advanced oxidation treatment of pharmaceutical effluents. Sep. Purif. Technol. 151, 243–250 (2015)

    Article  Google Scholar 

  59. Sandu, V.; Dumbrava, I.; Cormos, A.; Imre-Lucaci, A.; Cormos, C.; Cobden, P.; de Boer, R.: Computational fluid dynamics of rectangular monolith reactor vs. packed-bed column for sorption-enhanced water-gas shift. Comput. Aided Chem. Eng. 46, 751–756 (2019)

    Article  Google Scholar 

  60. Alafnan, S.; Awotunde, A.; Glatz, G.; Adjei, S.; Alrumaih, I.; Gowida, A.: Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. J. Petrol. Sci. Eng. 207, 109172 (2021)

    Article  Google Scholar 

  61. Hammond, K.; Conner, W.: Analysis of catalyst surface structure by physical sorption. Adv. Catal. 56, 1–101 (2013)

    Google Scholar 

  62. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1368 (1918)

    Article  Google Scholar 

  63. Karami, K.; Beram, S.M.; Bayat, P.; Siadatnasab, F.; Ramezanpour, A.: A novel nanohybrid based on metal–organic framework MIL101−Cr/PANI/Ag for the adsorption of cationic methylene blue dye from aqueous solution. J. Mol. Struct. 1247, 131352 (2022)

    Article  Google Scholar 

  64. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)

    Google Scholar 

  65. Kecili, R., Hussain, C.: Mechanism of adsorption on nanomaterials. Nanomater. Chromatogr. 4, 89–115 (2018)

    Article  Google Scholar 

  66. Temkin, M.; Pyzhev, V.: Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. URSS 12, 327–356 (1940)

    Google Scholar 

  67. Koble, R.A.; Corrigan, T.E.: Adsorption isotherms for pure hydrocarbons. Ind. Eng. Chem. 44, 383–387 (1952)

    Article  Google Scholar 

  68. Sadeghalvad, B.; Azadmehr, A.; Hezarkhani, A.: Assessment of iron ore mineral wastes for sulfate removal from groundwater wells: a case study. RSC Adv. 6, 11719–11734 (2016)

    Article  Google Scholar 

  69. Kamaraj, R.; Davidson, D.J.; Sozhan, G.; Vasudevan, G.: Adsorption of herbicide 2-(2,4-dichlorophenoxy)propanoic acid by electrochemically generated aluminium hydroxides: an alternative to chemical dosing. R. Soc. Chem. 5, 39799–39809 (2015)

    Google Scholar 

  70. Wang, J.; Guo, X.: Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020)

    Article  Google Scholar 

  71. Lagergren, S.K.: About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24, 1–39 (1898)

    Google Scholar 

  72. Blanchard, G.; Maunaye, M.; Martin, G.: Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501–1507 (1984)

    Article  Google Scholar 

  73. Viegas, R.; Campinas, M.; Costa, H.; Rosa, M.: How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption 20, 737–746 (2014)

    Article  Google Scholar 

  74. Boyd, G.E.; Adamson, A.W.; Myers, L.S.: The exchange adsorption of ions from aqueous solutions by organic zeolites II. Kinet. J. Am. Chem. Soc. 69, 2836–2848 (1947)

    Article  Google Scholar 

  75. Wang, G.; Yong, X.; Luo, L.; Yan, S.; Wong, J.; Zhou, J.: Structure- performance correlation of high surface area and hierarchical porous biochars as chloramphenicol adsorbents. Sep. Purif. Technol. 296, 121374 (2022)

    Article  Google Scholar 

  76. Agbovi, H.; Wilson, L.: Adsorption processes in biopolymer systems: fundamentals to practical applications. Nat. Polym. Based Green Adsorbents Water Treat 1, 1–51 (2021)

  77. Vasudevan, S.; Lakshmi, J.: Electrochemical removal of boron from water: Adsorption and thermodynamic studies. Can. J. Chem. Eng. 90, 1017–1026 (2012)

    Article  Google Scholar 

  78. Vasudevan, S.; Lakshi, J.: Studies relating to an electrochemically assisted coagulation for the removal of chromium from water using zinc anode. Water Sci. Techn. Water Supply 11, 142–150 (2011)

    Article  Google Scholar 

  79. Kamaraj, R.; Vasudevan, S.: Facile one-pot electrosynthesis of Al(OH)3-kinetics and equilibrium modeling for adsorption of 2,4,5-trichlorophenoxyacetic acid from aqueous solution. New J. Chem. 40, 2249–2258 (2016)

    Article  Google Scholar 

  80. Thaligari, S.; Srivastava, V.; Prasad, B.: Adsorptive desulfurization by zinc- impregnated activated carbon: characterization, kinetics, isotherms, and thermodynamic modeling. Clean Technol. Environ. Policy 18, 1021–1030 (2016)

    Article  Google Scholar 

  81. Tran, T.; Nguyen, D.; Le, H.; Bach, L.; Vo, D.; Hong, S.; Phan, T.; Nguyen, T.: Tunable synthesis of mesoporous carbons from Fe3O(BDC)3 for chloramphenicol antibiotic remediation. Nanomaterials 9, 237 (2019)

    Article  Google Scholar 

  82. Yan, Q.; Zhang, L.; Jiang, M.; Zhang, R.; Sun, H.: Sorption of chloramphenicol on pond sediments and the effect of coexistence Cu (II). Water Sci. Technol. 68, 1251–1257 (2013)

    Article  Google Scholar 

  83. Liang, S.; Guo, X.; Feng, N.; Tian, Q.: Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J. Hazard. Mater. 174, 756–762 (2010)

    Article  Google Scholar 

  84. Vasudevan, S.; Sheela, S.M.; Lakshmi, J.; Sozhan, G.: Optimization of the process parameters for the removal of boron from drinking water by electrocoagulation-A clean technology. J. Chem. Technol. Biotechnol. 85, 926–933 (2010)

    Article  Google Scholar 

  85. Kamaraj, R.; Davidson, D.J.; Sozhan, G.; Vasudevan, S.: An in situ electrosynthesis of metal hydroxides and their application for adsorption of 4-chloro-2-methylphenoxyacetic acid (MCPA) from aqueous solution. J. Environ. Chem. Eng. 2, 2068–2077 (2014)

    Article  Google Scholar 

  86. Kamaraj, R.; Pandiarajan, A.; Jayakiruba, S.; Maushad, M.: Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide. J. Mol. Liq. 215, 204–211 (2016)

    Article  Google Scholar 

  87. Saha, P.; Chowdhury, S.: Insight into adsorption thermodynamics. Thermodynamics 16, 349–364 (2011)

    Google Scholar 

  88. Nguyen, L.; Nguyen, N.; Nguyen, T.; Nguyen, T.; Nguyen, D.; Tran, T.: Occurrence, toxicity, and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ. Chem. Lett. 20, 1929–1963 (2022)

    Article  Google Scholar 

  89. Cantu, Y.; Remes, A.; Reyna, A.; Martinez, D.; Villarreal, J.; Ramos, H.; Trevino, S.; Tamez, C.; Martinez, A.; Eubanks, T.; Parsons, J.G.: Thermodynamics, kinetics, and activation energy studies of the sorption of chromium (III) and chromium (VI) to a Mn3O4 nanomaterial. Chem. Eng. J. 254, 374–383 (2014)

    Article  Google Scholar 

  90. Mohd Din, A.; Ahmad, M.; Hameed, B.: Ordered mesoporous carbons originated from non-edible polyethylene glycol 400 (PEG-400) for chloramphenicol antibiotic recovery from liquid phase. Chem. Eng. J. 260, 730–739 (2015)

    Article  Google Scholar 

  91. Zubair, M.; Aziz, H.A.; Ahmad, M.A.; Ihsanullah, I.; Al-Harthi, M.A.: Adsorption and reusability performance of M-Fe (M = Co, Cu, Zn and Ni) layered double hydroxides for the removal of hazardous Eriochrome Black T dye from different water streams. J. Water Process Eng. 42, 102060 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (Project Code: FRGS/1/2021/TKO/USM01/3) and post-doctoral award from Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Azmier Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 861 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anthonysamy, S.I., Yusop, M.F.M., Ismail, H. et al. Chloramphenicol Removal from Aqueous Solution Using Sodium Bicarbonate-Impregnated Coconut Husk-Derived Activated Carbon: Optimization and Insight Mechanism Study. Arab J Sci Eng 48, 15999–16022 (2023). https://doi.org/10.1007/s13369-023-07933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07933-3

Keywords

Navigation