Skip to main content
Log in

Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5–10-nm outer diameter, surface area of 40–600 m2/g, and purity above 95 % was used as an adsorbent. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. Manganese-adsorbed MWCNT was characterized by Raman, FTIR, X-ray diffraction, XPS, SEM, and TEM. The adsorption efficiency could reach 96.82 %, suggesting that MWCNT is an excellent adsorbent for manganese removal from water. The results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of manganese. Equilibrium data were well described by the typical Langmuir adsorption isotherm. Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic process. The experimental results showed that MWCNT is an excellent manganese adsorbent. The MWCNTs removed the manganese present in the water and reduced it to a permissible level making it drinkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep Purif Rev 39:95–171

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  Google Scholar 

  • Bedow K, Bekri-Abbes I, Srasra E (2008) Removal of cadmium (II) from aqueous using pure smectitic and Lewtite S100: the effects of time and metal concentration. Desalination 223:269–273

    Article  Google Scholar 

  • Chen CL, Wang XK (2006) Adsorption of Ni(II) from aqueous solution using oxidized multi-walled carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  • Dabeka RW, Conacher HB, Lawrence JF, Newsome WH, McKenzie A, Wagner HP (2002) Survey of bottled drinking waters sold in Canada for chlorate, bromide, bromate, lead, cadmium and other trace elements. Food Addit Contam 19:721–732

    Article  CAS  Google Scholar 

  • Erikson KM, Thompson K, Aschner J, Aschne M (2007) Manganese neurotoxicity A: focus on neonate. Pharmacol Ther 113:369–377

    Article  CAS  Google Scholar 

  • Freundlich H (1907) Ueber die adsorption in Loesungen. Phys Chem 57:385–470

    CAS  Google Scholar 

  • Friberg L (1983) Cadmium. Annu Rev Public Health 4:367

    Article  CAS  Google Scholar 

  • Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin YB, Terui N, Nodasaka Y, Sasa K, Shimizu K, Akasaka T, Yokoyama A, Mori M, Tanaka K, Sato Y, Tohji K, Tanaka S, Nishi N, Watari F (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dynes. Environ Sci Technol 38:6890–6896

    Article  CAS  Google Scholar 

  • Golder AK, Samantha AN, Ray S (2006) Removal of phosphate from aqueous solution using calcined metal hydroxides sludge waste generated from electrocoagulation. Sep Purif Technol 52:102–109

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2007a) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta 72:976–983

    Article  CAS  Google Scholar 

  • Goyal RN, Gupta VK, Oyama M, Bachheti N (2007b) Voltammetric determination of adenosine and guanosine using fullerene-C60-modified glassy carbon electrode. Talanta 71:1110–1117

    Article  CAS  Google Scholar 

  • Guodong S, Li J, Dadong S, Jun H, Changlun C, Yixue C, Xiangke W (2010) Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J Hazard Mater 178:333–340

    Article  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008a) Equilibrium and kinetic modeling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008b) Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J Hazard Mater 154:347–354

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008c) Biosorption of lead from aqueous solutions by green algae Spirogyra species: equilibrium and adsorption kinetics. J Hazard Mater 152:407–414

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008d) Biosorption of lead from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloids Surf B 64:170–178

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141

    Article  CAS  Google Scholar 

  • Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash—a low cost adsorbent. Ind Eng Chem Res 42:6619–6624

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas A (2009) Application of low cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Dwivedi MK, Mohan D (1997a) Process development for the removal of zinc and cadmium from wastewater using slag—a blast furnace waste material. Sep Sci Technol 32:2883–2912

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (1997b) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interface Sci 315:87–93

    Article  Google Scholar 

  • Gupta VK, Mohan D, Sharma S (1998) Removal of lead from wastewater using bagasse fly ash—a sugar industry waste material. Sep Sci Technol 33:1331–1343

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic waste by carbon columns (obtained from fertilizer waste material). Water Res 34:1543–1550

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminum industry waste. Water Res 35:1125–1134

    Article  CAS  Google Scholar 

  • Gupta VK, Mangla R, Agarwal S (2002) Pb (II) selective potentiometric sensor based on 4-tert-Butylcalix [4] arene in PVC matrix. Electroanalysis 14:1127–1132

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V, Mittal J (2006a) Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446–1453

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Jain R, Mathur M, Sikarwar S (2006b) Adsorption of safranin-T from wastewater using waste materials—activated carbon and activated rice husk. J Colloid Interface Sci 303:80–86

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Maheshwari G, Lang H (2006c) Copper (II)-selective potentiometric sensor based on porphyrins in PVC matrix. Sensors Actuators B117:99–106

    CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006d) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304:52–57

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK (2007a) Defluoridation of wastewaters using waste carbon slurry. Water Res 41:3307–3316

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007b) Schiff bases as cadmium (II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583:340–348

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007c) Electrochemical removal of hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312:292–296

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Shalini S (2007d) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Varshney S (2007e) Removal of Reactofix golden yellow 3RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142:443–448

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2008) Adsorption of basic fuchsin using waste materials—bottom ash and de-oiled soya as adsorbents. J Colloid Interface Sci 319:30–39

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas A (2009a) Low cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009b) Comparative studies of neodymium (III)-selective PVC membrane sensors. Anal Chim Acta 647:66–71

    Article  CAS  Google Scholar 

  • Gupta VK, Al Khayat M, Singh AK, Pal MK (2009c) Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases. Anal Chim Acta 634:36–43

    Article  CAS  Google Scholar 

  • Gupta VK, Goyal RN, Sharma RA (2009d) Novel PVC membrane based alizarin sensor and its application; Determination of vanadium, zirconium and molybdenum. Int J Electrochem Sci 4:156–172

    CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv. doi:10.1039/C2RA20340E

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. J Chem Eng 70:115–124

    CAS  Google Scholar 

  • Jain AK, Gupta VK, Sahoo BB, Singh LP (1995a) Copper (II)-selective electrodes based on macrocyclic compounds. Anal Proc Incl Anal Commun (RSC) 32:99–101

    Article  Google Scholar 

  • Jain AK, Gupta VK, Singh LP (1995b) Neutral carrier and organic resin based membranes as sensors for uranyl ions. Anal Proc Incl Anal Commun (RSC) 32:263–265

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Singh LP, Khurana U (1997a) Macrocycle based membrane sensors for the determination of cobalt(II) ions. Analyst 122:583–586

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Khurana U, Singh LP (1997b) A new membrane sensor for UO2+, based on 2-hydroxyacetophenoneoxime-thioureatrioxane resin. Electroanalysis 9:857–860

    Article  CAS  Google Scholar 

  • Langmuir I (1918) Adsorption of gases on plain surfaces of glass mica platinum. J Am Chem Soc 40:1316–1403

    Article  Google Scholar 

  • Mckay G, Blair HS, Gardener JR (1982) Adsorption of dyes on chitin. I. Equilibrium studies. J Appl Polym Sci 27:3043–3057

    Article  CAS  Google Scholar 

  • Melnik L, Vysotskaja O, Kornilovich B (1999) Boron behavior during desalination of sea and underground water by electrodialysis. Desalination 124:125–130

    Article  CAS  Google Scholar 

  • Mollah A, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater 84:29–41

    Article  CAS  Google Scholar 

  • Mouedhen G, Feki M, De Petris WM, Ayedi HF (2008) Behaviour of aluminum electrodes in electrocoagulation. J Hazard Mater 150:124–135

    Article  CAS  Google Scholar 

  • Nogawa K, Kobayashi E, Okubo Y, Suwazono Y (2004) Environmental cadmium exposure, adverse effects and preventive measure in Japan. Biometals 17:581–590

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2011) Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ Sci Pollut Res. doi:10.1007/s11356-011-0670-6

  • Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Inteface Sci 279:307–313

    Article  CAS  Google Scholar 

  • Sharma A, Bhattacharyya KG (2004) Adsorption of chromium(VI) on Azadirachta indica (neem) leaf powder. Adsorption 10:327–338

    Article  Google Scholar 

  • Srivastava SK, Gupta VK, Dwivedi MK, Jain S (1995) Caesium PVC-crown (dibenzo-24-crown-8) based membrane sensor. Anal Proc Incl Anal Commun (RSC) 32:21–23

    Article  CAS  Google Scholar 

  • Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag—a blast-furnace waste. J Environ Eng 123:461–468

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2011) Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. Sep Purif Technol 80:643–651

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J (2012a) The adsorption of phosphate by graphene from aqueous solution. RSC Adv. doi:10.1039/C2RA20270K

  • Vasudevan S, Lakshmi J (2012b) Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water. Water Sci Technol 65:353–360

    Article  CAS  Google Scholar 

  • Vasudevan S, Sozhan G, Ravichandran S, Jayaraj J, Lakshmi J, Margrat Sheela S (2008) Studies on the removal of phosphate from drinking water by electrocoagulation process. Ind Eng Chem Res 47:2018–2023

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2009) Studies on the removal of iron from drinking water by electrocoagulation—a clean process. Clean 37:45–51

    CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Packiyam M (2010a) Electrocoagulation studies on removal of cadmium using magnesium electrode. J Appl Electrochem 40:2023–2032

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Vanathi R (2010b) Electrochemical coagulation for chromium removal: process optimization, kinetics, isotherm and sludge characterization. Clean 38:9–16

    CAS  Google Scholar 

  • Vasudevan S, Margrat Sheel S, Lakshmi J, Sozhan G (2010c) Optimization of the process parameters for the removal of boron from drinking water by electrocoagulation—a clean technology. J Chem Technol Biotechnol 85:926–933

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2010d) Studies relating to removal of arsenate by electrochemical coagulation optimization, kinetics, coagulant characterization. Sep Sci Technol 45:1313–1325

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2010e) Studies on the removal of arsenate by electrochemical coagulation using aluminium alloy anode. Clean 38:506–515

    CAS  Google Scholar 

  • Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Sorption of 243Am(III) to multi-wall carbon nanotubes. Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  • WHO (2004) Manganese in drinking water. Background document for development of WHO guidelines for drinking water quality report

  • Yang K, Wang X, Zhu L, Xing B (2006) Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ Sci Technol 40:5804–5810

    Article  CAS  Google Scholar 

  • Youssef AM, Nabarawuy TE, Samra SE (2004) Sorption properties chemically activated carbons 1. Sorption of cadmium(II) ions. Colloids Surf Physicochem Eng Asp 235:153–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Director of Central Electrochemical Research Institute, Karaikudi for the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanyan Vasudevan.

Additional information

Responsible editor: Vinod Kumar Gupta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, P., Kamaraj, R., Sozhan, G. et al. Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution. Environ Sci Pollut Res 20, 987–996 (2013). https://doi.org/10.1007/s11356-012-0928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0928-7

Keywords

Navigation