Skip to main content
Log in

Development of Mixed Metal Oxides–Conductive Polymer Composites for an Anticorrosive Application

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The magnesium oxide–nickel oxide (MgO–NiO), nickel oxide–cobalt oxide (NiO–CoO), and magnesium oxide–cobalt oxide (MgO–CoO)-based mixed metal oxides (MMO) were synthesized by sol–gel method. The grafting of conductive polymers (CP), namely polyaniline (PANI), polyorthoanisidine (POA), and PANI–POA copolymer, is carried out on synthesized mixed metal oxide (MMO) by using a chemical oxidation method using ammonium persulfate (APS) as oxidizer, and the doping agent is used as hydrochloric acid (HCl) to make the MMO-CP composites. The synthesis of MMO-CP formation was confirmed with the FTIR, XRD, and UV–visible analysis. The epoxy-polyamide coating formulation is reinforced with MMO-CP composites at 4% (w/w) concentration, and the ultrasonication technique is used for uniform dispersion of MMO-CP into the coating formulation. The mild steel is used as a substrate for casting synthesized coating film, and curing is carried out at 90 °C. The mechanical analysis observed that hardness properties and scratch formation resistance are increased by reinforcement of MMO-CP, whereas chemical resistance remained unaffected. The corrosion resistance increased by incorporation of MMO-CP into the coating formulation, and it is evaluated by the salt spray analysis. The NiO–CoO–POA composite-based coating performs excellently in pencil hardness, scratch resistance, and in the salt spray test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Grewal, H.S.; Agrawal, A.; Singh, H.: Identifying erosion mechanism: a novel approach. Tribol. Lett. 51(1), 1–7 (2013)

    Article  Google Scholar 

  2. Uhlig, H.H.: Effect of metal composition and structure on corrosion and oxidation. Corrosion 19(7), 231–237 (1963)

    Article  Google Scholar 

  3. Sung, L.-P.; Scierka, S.; Baghai-Anaraki, M.; Derek, L.H.: Characterization of metal-oxide nanoparticles: synthesis and dispersion in polymeric coatings. MRS Online Proc. Libr. 740(1), 1–6 (2002)

    Google Scholar 

  4. Anjum, M.J.; Ali, H.; Khan, W.Q.; Zhao, J.; Yasin, G.: "Metal/metal oxide nanoparticles as corrosion inhibitors. Corros. Protect. Nanoscale (2020). https://doi.org/10.1016/B978-0-12-819359-4.00011-8

    Article  Google Scholar 

  5. Zuo, R.; Örnek, D.; Syrett, B.C.; Green, R.M.; Hsu, C.–H.; Mansfeld, F.B.; Wood, T.K.: "Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water. Appl. Microbiol. Biotechnol. 64(2), 275–283 (2004)

    Article  Google Scholar 

  6. Stejskal, J.; Trchová, M.; Bober, P.; Humpolíček, P.; Kašpárková, V.; Sapurina, I.; Shishov, M.A.; Varga, M.: Conducting polymers: polyaniline. In: Encyclopedia of polymer science and technology, pp. 1–44. Wiley (2002)

    Google Scholar 

  7. Bhadra, J.; Alkareem, A.; Al-Thani, N.: A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J. Polym. Res. 27, 5 (2020)

    Article  Google Scholar 

  8. Chaudhari, S.; Sainkar, S.R.; Patil, P.P.: Anticorrosive properties of electrosynthesized poly (o-anisidine) coatings on copper from aqueous salicylate medium. J. Phys. D Appl. Phys. 40, 520 (2002)

    Article  Google Scholar 

  9. Ibrahim, M.; Kannan, K.; Parangusan, H.; Eldeib, S.; Shehata, O.; Ismail, M.; Zarandah, R.; Sadasivuni, K.K.: Enhanced corrosion protection of epoxy/ZnO-NiO nanocomposite coatings on steel. Coatings 10(8), 783 (2020)

    Article  Google Scholar 

  10. Hamadi, L.; Mansouri, S.; Oulmi, K.; Kareche, A.: The use of amino acids as corrosion inhibitors for metals: a review. Egypt. J. Pet. 27(4), 1157–1165 (2018)

    Article  Google Scholar 

  11. Abu-Thabit, N.Y.: Chemical oxidative polymerization of polyaniline: a practical approach for preparation of smart conductive textiles. J. Chem. Educ. 93(9), 1606–1611 (2016)

    Article  Google Scholar 

  12. Ozyilmaz, A.T.; Ozyilmaz, G.; Yigitoglu, O.: Synthesis and characterization of poly (aniline) and poly (o-anisidine) films in sulphamic acid solution and their anticorrosion properties. Prog. Org. Coat. 67(1), 28–37 (2010)

    Article  Google Scholar 

  13. Sarkar, S.; Sarswat, P.K.; Free, M.L.: Metal oxides and novel metallates coated stable engineered steel for corrosion resistance applications. Appl. Surf. Sci. 456, 328–341 (2018)

    Article  Google Scholar 

  14. Yang, X.; Li, B.; Wang, H.; Hou, B.: Anticorrosion performance of polyaniline nanostructures on mild steel. Prog. Org. Coat. 69(3), 267–271 (2010)

    Article  Google Scholar 

  15. Nynaru, V.; Jayamani, E.; Srinivasulu, M.; Han, E.C.; Bin Bakri, M.K.: Short review on conductive polymer composites as functional materials. Key Eng. Mater. 796, 17–21 (2019)

    Article  Google Scholar 

  16. Chung, D.D.L.: Composite Materials: Functional Materials for Modern Technologies. Springer (2003)

    Book  Google Scholar 

  17. Marimuthu, M.; Ganesan, S.; Johnbosco, J.Y.: Hierarchically structured MgO enrich NiCo2O4 nanorod arrays@ ultra-high cyclic stability for new generation supercapacitor. Electrochim. Acta 357, 136848 (2020)

    Article  Google Scholar 

  18. Almashhadani, H.A.: Synthesis of a CoO–ZnO nanocomposite and its study as a corrosion protection coating for stainless steel in saline solution. Int. J. Corros. Scale Inhib 10, 1294–1306 (2021)

    Google Scholar 

  19. Xu, H.; Liu, W.; Cao, L.; Su, G.; Duan, R.: Preparation of porous TiO2/ZnO composite film and its photocathodic protection properties for 304 stainless steel. Appl. Surf. Sci. 301, 508–514 (2014)

    Article  Google Scholar 

  20. AlFalah, M.G.K.; Kamberli, E.; Abbar, A.H.; Kandemirli, F.; Saracoglu, M.: Corrosion performance of electrospinning nanofiber ZnO-NiO-CuO/polycaprolactone coated on mild steel in acid solution. Surfaces Interfaces 21, 100760 (2020)

    Article  Google Scholar 

  21. Zhao, Y.; Tian, S.; Lin, D.; Zhang, Z.; Li, G.: Functional anti-corrosive and anti-bacterial surface coatings based on cuprous oxide/polyaniline microcomposites. Mater. Des. 216, 110589 (2022)

    Article  Google Scholar 

  22. Sathiyanarayanan, S.; Azim, S.S.; Venkatachari, G.: Corrosion protection of magnesium ZM 21 alloy with polyaniline–TiO2 composite containing coatings. Prog. Org. Coat. 59, 291–296 (2007)

    Article  Google Scholar 

  23. Kadri, Y.; Srasra, E.; Bekri-Abbes, I.; Herrasti, P.: Facile and eco-friendly synthesis of polyaniline/ZnO composites for corrosion protection of AA-2024 aluminium alloy. J. Electroanal. Chem. 893, 115335 (2021)

    Article  Google Scholar 

  24. Benitha, V.S.; Jeyasubramanian, K.; Hikku, G.S.: Investigation of anti-corrosion ability of nano mixed metal oxide pigment dispersed alkyd coating and its optimization for A36 steel. J. Alloy. Compd. 721, 563–576 (2017)

    Article  Google Scholar 

  25. Chandrappa, K.; Venkatesha, T.; Praveen, B.; Shylesha, B.: Generation of nanostructured MgO particles by solution phase method. Res. J. Chem. Sci. 2231, 606X (2015)

    Google Scholar 

  26. Kayani, Z.N.; Butt, M.Z.; Riaz, S.; Naseem, S.: Synthesis of NiO nanoparticles by sol-gel technique. Mater. Sci. Poland 36(4), 547–552 (2018)

    Article  Google Scholar 

  27. Xu, Y.; Guo, J.; Chen, Di.; Miaomiao, Hu.; Li, P.; Yongjin, Yu.; Zhang, H.: Effects of amphoteric polycarboxylate dispersant (APC) and acetone formaldehyde sulfite polycondensate (AFS) on the rheological behavior and model of oil well cement pastes. Colloids Surf. A 569, 35–42 (2019)

    Article  Google Scholar 

  28. Yeole, K.V.; Mahajan, L.H.; Mhaske, S.T.: Poly (o-anisidine)-MWCNT nanocomposite: synthesis, characterization and anticorrosion properties. Polym. Compos. 36, 1477–1485 (2015)

    Article  Google Scholar 

  29. Siddique, M.; Khan, N.M.; Saeed, M.; Ali, S.; Shah, Z.: Green synthesis of cobalt oxide nanoparticles using Citrus medica leaves extract: characterization and photo-catalytic activity. Z. Phys. Chem. 235(6), 663–681 (2021)

    Article  Google Scholar 

  30. Dharmaraj, N.; Prabu, P.; Nagarajan, S.; Kim, C.H.; Park, J.H.; Kim, H.Y.: Synthesis of nickel oxide nanoparticles using nickel acetate and poly (vinyl acetate) precursor. Mater. Sci. Eng. B 128(1–3), 111–114 (2006)

    Article  Google Scholar 

  31. Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.: Cobalt oxide nanoparticles: characterization and its electrocatalytic activity towards nitrobenzene. Chem. Sci. Trans. 2(S1), S47–S50 (2013)

    Google Scholar 

  32. Reddy, K.R.; Karthik, K.V.; Prasad, S.B.; Soni, S.K.; Jeong, H.M.; Raghu, A.V.: Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120, 169–174 (2016)

    Article  Google Scholar 

  33. Lu, Q.; Lee, J.H.; Lee, J.H.; Choi, H.J.: Magnetite/poly (ortho-anisidine) composite particles and their electrorheological response. Materials 14(11), 2900 (2021)

    Article  Google Scholar 

  34. Hsissou, R.; Benassaoui, H.; Benhiba, F.; Hajjaji, N.; El Harfi, A.: Application of a new trifunctional epoxy prepolymer, triglycidyl ethylene ether of bisphenol a, in the coating of E24 steel in 3.5% NaCl. J. Chem. Technol. Metall. 52, 431–438 (2017)

    Google Scholar 

  35. Verma, C.; Olasunkanmi, L.O.; Akpan, E.D.; Quraishi, M.A.; Dagdag, O.; El Gouri, M.; Sherif, E.S.; Ebenso, E.E.: Epoxy resins as anticorrosive polymeric materials: a review. React. Funct. Polym. 156, 104741 (2020)

    Article  Google Scholar 

  36. Xavier, J.R.; Beryl, J.R.; Vinodhini, S.P.; Janaki, G.B.: Enhanced protective and mechanical properties of polypyrrole coatings modified by silane/CoO nanocomposite on AZ91 Mg alloy in chloride media. J. Bio- Tribo-Corros. 7, 46 (2021)

    Article  Google Scholar 

  37. Deshpande, P.P.; Jadhav, N.G.; Gelling, V.J.; Sazou, D.: Conducting polymers for corrosion protection: a review. J. Coat. Technol. Res. 11(4), 473–494 (2014)

    Article  Google Scholar 

  38. More, A.; Mhaske, S.: Epoxy-based anticorrosive coating developed with modified poly(o-anisidine) and depolymerized product of PET waste. Iran. Polym. J. 27(6), 359–370 (2018)

    Article  Google Scholar 

  39. Ohtsuka, T.: Corrosion protection of steels by conducting polymer coating. Int. J. Corros. 1–7, 2012 (2012)

    Google Scholar 

  40. DeBerry, D.W.: Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J. Electrochem. Soc. 132, 1022 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti More.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, C., Mahajan, D., Bind, R. et al. Development of Mixed Metal Oxides–Conductive Polymer Composites for an Anticorrosive Application. Arab J Sci Eng 48, 7841–7854 (2023). https://doi.org/10.1007/s13369-023-07911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07911-9

Keywords

Navigation