Skip to main content
Log in

Performance and Mechanism of a Green and Sustainable γ-nFe2O3-Based Magnetic Biochar for the Effective Adsorption of Cadmium

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To improve the greenness and recyclability of adsorbent materials, a simple two-step method for the preparation of γ-nFe2O3-based magnetic biochar (FeMnBC) with high adsorption capacity and magnetic recovery properties from coffee waste was developed to achieve the cadmium (Cd) removal from aqueous solutions. Elemental analyzer, TEM, BET, XRD, FTIR and VSM (vibrating sample magnetometer) were used to characterize and evaluate the effects of each operation step or the introduction of materials during the synthesis of FeMnBC. The results showed that impregnation with KMnO4 improved the porosity and Cd adsorption capacity of biochar. The FeMnBC had a maximum adsorption capacity of 111.36 mg/g according to the Langmuir model, and the Cd adsorption capacity was > 100.27 mg/g in the pH range of 4–9 for the application of raw coffee grounds with a certain organic load and acidity. In contrast, previous studies have found that the pH had a significant impact on the adsorption capacity of biochar, and the addition of magnetic matrix may result in a reduction in adsorption capacity (typically < 50 mg/g). The magnetization saturation of FeMnBC reached 16.61 emu/g, which was sufficient for the FeMnBC to be separated by a magnet (> 93.27%) due to the introduction of γ-nFe2O3. Moreover, the Cd removal capacity by secondary regeneration FeMnBC was still greater than 91.37 mg/g, which was of great significance to the greenness and sustainability of the adsorbent material. Furthermore, the mechanism of Cd adsorption by FeMnBC was the formation of complexes through oxygen-containing functional groups and Fe/Mn oxides, cation exchange reactions, π-bond complexation and precipitation reactions, as confirmed by XRD, FTIR, SEM–EDS and XPS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choppala, G.; Saifullah, B.N., et al.: Cellular mechanisms in higher plants governing tolerance to cadmium Toxicity. CRC. Crit. Rev. Plant Sci. 33, 374–391 (2014)

    Article  Google Scholar 

  2. Kubier, A.; Wilkin, R.T.; Pichler, T.: Cadmium in soils and groundwater: a review. Appl. Geochem. (2019). https://doi.org/10.1016/j.apgeochem.2019.104388

    Article  Google Scholar 

  3. Mohan, D.; Pittman, C.U.; Bricka, M., et al.: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 310, 57–73 (2007). https://doi.org/10.1016/j.jcis.2007.01.020

    Article  Google Scholar 

  4. Yu, Z.H.; Zhang, Y.F.; Zhai, S.R., et al.: Amino-modified mesoporous sorbents for efficient Cd(II) adsorption prepared using non-chemical diatomite as precursor. J. Sol-Gel Sci. Technol. 78, 110–119 (2016). https://doi.org/10.1007/s10971-015-3933-8

    Article  Google Scholar 

  5. Bandara, T.; Franks, A.; Xu, J., et al.: Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Crit. Rev. Environ. Sci. Technol. 50, 903–978 (2020). https://doi.org/10.1080/10643389.2019.1642832

    Article  Google Scholar 

  6. Chitpong, N.; Husson, S.M.: Nanofiber ion-exchange membranes for the rapid uptake and recovery of heavy metals from water. Membranes (Basel) (2016). https://doi.org/10.3390/membranes6040059

    Article  Google Scholar 

  7. Kruglikov, S.S.; Nekrasova, N.E.; Kuznetsov, V.V.; Filatova, E.A.: An electromembrane process for cadmium recovery from dilute cadmium electroplating dragout solutions. Membr. Membr. Technol. 1, 120–126 (2019). https://doi.org/10.1134/s2517751619020057

    Article  Google Scholar 

  8. Lee, H.H.; Owens, V.N.; Park, S., et al.: Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium. Chemosphere 206, 369–375 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.176

    Article  Google Scholar 

  9. Zieliński, J.; Huculak-Mączka, M.; Kaniewski, M., et al.: Kinetic modelling of cadmium removal from wet phosphoric acid by precipitation method. Hydrometallurgy (2019). https://doi.org/10.1016/j.hydromet.2019.105157

    Article  Google Scholar 

  10. Attar, K.; Bouazza, D.; Miloudi, H., et al.: Cadmium removal by a low-cost magadiite-based material: characterization and sorption applications. J. Environ. Chem. Eng. 6, 5351–5360 (2018). https://doi.org/10.1016/j.jece.2018.08.014

    Article  Google Scholar 

  11. Liu, J.; Zhu, R.; Ma, L., et al.: Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: a comparative study on ferrihydrite, goethite, and hematite. Geoderma (2021). https://doi.org/10.1016/j.geoderma.2020.114799

    Article  Google Scholar 

  12. Patra, C.; Medisetti, R.M.N.; Pakshirajan, K.; Narayanasamy, S.: Assessment of raw, acid-modified and chelated biomass for sequestration of hexavalent chromium from aqueous solution using Sterculia villosa Roxb. shells. Environ. Sci. Pollut. Res. 26, 23625–23637 (2019). https://doi.org/10.1007/s11356-019-05582-4

    Article  Google Scholar 

  13. Imran, M.; Khan, Z.U.H.; Iqbal, M.M., et al.: Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study. Environ. Pollut. (2020). https://doi.org/10.1016/j.envpol.2020.114231

    Article  Google Scholar 

  14. Ahmad, M.; Rajapaksha, A.U.; Lim, J.E., et al.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  15. Carolin, C.F.; Kumar, P.S.; Saravanan, A., et al.: Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5, 2782–2799 (2017). https://doi.org/10.1016/j.jece.2017.05.029

    Article  Google Scholar 

  16. Huang, F.; Zhang, S.-M.; Wu, R.-R., et al.: Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars. Environ. Pollut. 275, 116485 (2021). https://doi.org/10.1016/j.envpol.2021.116485

    Article  Google Scholar 

  17. Huang, M.-L.; Yen, P.-L.; Hsiu-Chuan Liao, V.: A combined approach to remediate cadmium contaminated sediment using the acidophilic sulfur-oxidizing bacterial SV5 and untreated coffee ground. Chemosphere 273, 129662 (2021). https://doi.org/10.1016/j.chemosphere.2021.129662

    Article  Google Scholar 

  18. Deng, Y.; Huang, S.; Dong, C., et al.: Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresour. Technol. (2020). https://doi.org/10.1016/j.biortech.2020.122853

    Article  Google Scholar 

  19. Harikishore Kumar Reddy, D.; Lee, S.M.: Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids Surf. Physicochem. Eng. Asp 454, 96–103 (2014). https://doi.org/10.1016/j.colsurfa.2014.03.105

    Article  Google Scholar 

  20. Park, J.H.; Wang, J.J.; Kim, S.H., et al.: Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures. J. Colloid Interface Sci. 553, 298–307 (2019). https://doi.org/10.1016/j.jcis.2019.06.032

    Article  Google Scholar 

  21. Li, B.; Yang, L.; Wang, C.; quan, et al.: Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175, 332–340 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.061

    Article  Google Scholar 

  22. Li, H.; Dong, X.; da Silva, E.B., et al.: Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–478 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.072

    Article  Google Scholar 

  23. Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A.: Production, composition, and application of coffee and its industrial residues. Food Bioprocess. Technol. 4, 661–672 (2011). https://doi.org/10.1007/s11947-011-0565-z

    Article  Google Scholar 

  24. Nabais, J.M.V.; Nunes, P.; Carrott, P.J.M., et al.: Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Process. Technol. 89, 262–268 (2008). https://doi.org/10.1016/j.fuproc.2007.11.030

    Article  Google Scholar 

  25. Anastopoulos, I.; Karamesouti, M.; Mitropoulos, A.C.; Kyzas, G.Z.: A review for coffee adsorbents. J. Mol. Liq. 229, 555–565 (2017). https://doi.org/10.1016/j.molliq.2016.12.096

    Article  Google Scholar 

  26. Liu, J.; Yang, X.; Liu, H., et al.: Modification of calcium-rich biochar by loading Si/Mn binary oxide after NaOH activation and its adsorption mechanisms for removal of Cu(II) from aqueous solution. Colloids Surf. Physicochem. Eng. Asp. 601, 124960 (2020). https://doi.org/10.1016/j.colsurfa.2020.124960

    Article  Google Scholar 

  27. Sizmur, T.; Fresno, T.; Akgül, G., et al.: Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34–47 (2017). https://doi.org/10.1016/j.biortech.2017.07.082

    Article  Google Scholar 

  28. Zhang, J.; Ma, X.; Yuan, L.; Zhou, D.: Comparison of adsorption behavior studies of Cd2+ by vermicompost biochar and KMnO4-modified vermicompost biochar. J. Environ. Manage. (2020). https://doi.org/10.1016/j.jenvman.2019.109959

    Article  Google Scholar 

  29. Yi, Y.; Huang, Z.; Lu, B., et al.: Magnetic biochar for environmental remediation: a review. Bioresour. Technol. (2019). https://doi.org/10.1016/j.biortech.2019.122468

    Article  Google Scholar 

  30. Thines, K.R.; Abdullah, E.C.; Mubarak, N.M.; Ruthiraan, M.: Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renew. Sustain. Energy Rev. 67, 257–276 (2017). https://doi.org/10.1016/j.rser.2016.09.057

    Article  Google Scholar 

  31. Karunanayake, A.G.; Todd, O.A.; Crowley, M., et al.: Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chem. Eng. J. 331, 480–491 (2018). https://doi.org/10.1016/j.cej.2017.08.124

    Article  Google Scholar 

  32. Uday, V.; Harikrishnan, P.S.; Deoli, K., et al.: Current trends in production, morphology, and real-world environmental applications of biochar for the promotion of sustainability. Bioresour. Technol. 359, 127467 (2022). https://doi.org/10.1016/j.biortech.2022.127467

    Article  Google Scholar 

  33. Zhu, S.; Yang, Y.; Yan, Y., et al.: Agricultural waste to real worth biochar as a sustainable material for supercapacitor. Sci. Total Environ. (2022). https://doi.org/10.1016/j.scitotenv.2023.161441

    Article  Google Scholar 

  34. Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I.: Chemical, functional, and structural properties of spent coffee grounds and coffee Silverskin. Food Bioprocess. Technol. 7, 3493–3503 (2014). https://doi.org/10.1007/s11947-014-1349-z

    Article  Google Scholar 

  35. Chen, B.; Zhou, D.; Zhu, L.: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137–5143 (2008). https://doi.org/10.1021/es8002684

    Article  Google Scholar 

  36. Yin, G.; Song, X.; Tao, L., et al.: Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(II) from aqueous solutions. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124465

    Article  Google Scholar 

  37. Son, E.B.; Poo, K.M.; Chang, J.S.; Chae, K.J.: Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci. Total Environ. 615, 161–168 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.171

    Article  Google Scholar 

  38. Zhou, J.; He, J.; Li, G., et al.: Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J. Phys. Chem. C 114, 7611–7617 (2010). https://doi.org/10.1021/jp911030n

    Article  Google Scholar 

  39. Samaraweera, H.; Pittman, C.U.; Thirumalai, R.V.K.G., et al.: Characterization of graphene/pine wood biochar hybrids: potential to remove aqueous Cu2+. Environ. Res. 192, 110283 (2021). https://doi.org/10.1016/j.envres.2020.110283

    Article  Google Scholar 

  40. Chizari Fard, G.; Mirjalili, M.; Najafi, F.: Hydroxylated α-Fe2O3 nanofiber: optimization of synthesis conditions, anionic dyes adsorption kinetic, isotherm and error analysis. J. Taiwan Inst. Chem. Eng. 70, 188–199 (2017). https://doi.org/10.1016/j.jtice.2016.10.045

    Article  Google Scholar 

  41. Samaraweera, H.; Nawalage, S.; Nayanathara, R.M.O., et al.: In situ synthesis of zero-valent iron-decorated lignite carbon for aqueous heavy metal remediation. Processes (2022). https://doi.org/10.3390/pr10081659

    Article  Google Scholar 

  42. Zhao, Y.; Zhang, R.; Liu, H., et al.: Green preparation of magnetic biochar for the effective accumulation of Pb(II): performance and mechanism. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122011

    Article  Google Scholar 

  43. Fu, R.; Yang, Y.; Xu, Z., et al.: The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 138, 726–734 (2015). https://doi.org/10.1016/j.chemosphere.2015.07.051

    Article  Google Scholar 

  44. Khan, Z.H.; Gao, M.; Qiu, W., et al.: Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere (2020). https://doi.org/10.1016/j.chemosphere.2019.125701

    Article  Google Scholar 

  45. Zhang, F.; Wang, X.; Xionghui, J.; Ma, L.: Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environ. Pollut. 216, 575–583 (2016). https://doi.org/10.1016/j.envpol.2016.06.013

    Article  Google Scholar 

  46. Zhou, Q.; Liao, B.; Lin, L., et al.: Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Sci. Total Environ. 615, 115–122 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.220

    Article  Google Scholar 

  47. Zhou, X.; Zhou, J.; Liu, Y., et al.: Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water. Fuel 233, 469–479 (2018). https://doi.org/10.1016/j.fuel.2018.06.075

    Article  Google Scholar 

  48. Naushad, M.; Alothman, Z.A.; Awual, M.R.; Alam, M.M.; Eldesoky, G.E.: Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb 2+ and Hg 2+ metal ions from aqueous medium using Ti (IV) iodovanadate cation exchanger. Ionics 21, 2237–2245 (2015). https://doi.org/10.1007/s11581-015-1401-7

    Article  Google Scholar 

  49. Liu, Z.; Zhang, F.S.; Wu, J.: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89, 510–514 (2010). https://doi.org/10.1016/j.fuel.2009.08.042

    Article  Google Scholar 

  50. Vardon, D.R.; Moser, B.R.; Zheng, W., et al.: Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain. Chem. Eng. 1, 1286–1294 (2013). https://doi.org/10.1021/sc400145w

    Article  Google Scholar 

  51. Zheng, Y.; Wang, J.; Li, D., et al.: Insight into the KOH/KMnO4 activation mechanism of oxygen-enriched hierarchical porous biochar derived from biomass waste by in-situ pyrolysis for methylene blue enhanced adsorption. J. Anal. Appl. Pyrolysis (2021). https://doi.org/10.1016/j.jaap.2021.105269

    Article  Google Scholar 

  52. Rusmin, R.; Sarkar, B.; Liu, Y., et al.: Structural evolution of chitosan-palygorskite composites and removal of aqueous lead by composite beads. Appl. Surf. Sci. 353, 363–375 (2015). https://doi.org/10.1016/j.apsusc.2015.06.124

    Article  Google Scholar 

  53. Tong, X.J.; Li, J.Y.; Yuan, J.H.; Xu, R.K.: Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 172, 828–834 (2011). https://doi.org/10.1016/j.cej.2011.06.069

    Article  Google Scholar 

  54. Lin, L.; Qiu, W.; Wang, D., et al.: Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism. Ecotoxicol Environ. Saf. 144, 514–521 (2017). https://doi.org/10.1016/j.ecoenv.2017.06.063

    Article  Google Scholar 

  55. Kim, S.A.; Kamala-Kannan, S.; Lee, K.J., et al.: Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem. Eng. J. 217, 54–60 (2013). https://doi.org/10.1016/j.cej.2012.11.097

    Article  Google Scholar 

  56. Qu, J.; Meng, X.; Jiang, X., et al.: Enhanced removal of Cd(II) from water using sulfur-functionalized rice husk: characterization, adsorptive performance and mechanism exploration. J. Clean. Prod. 183, 880–886 (2018). https://doi.org/10.1016/j.jclepro.2018.02.208

    Article  Google Scholar 

  57. Qiu, Y.; Zhang, Q.; Li, M., et al.: Adsorption of Cd(II) from aqueous solutions by modified biochars: comparison of modification methods. Water Air Soil Pollut. (2019). https://doi.org/10.1007/s11270-019-4135-8

    Article  Google Scholar 

  58. Liang, J.; Li, X.; Yu, Z., et al.: Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II). ACS Sustain. Chem. Eng. 5, 5049–5058 (2017). https://doi.org/10.1021/acssuschemeng.7b00434

    Article  Google Scholar 

  59. Liu, L.; Fan, S.: Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism. Environ. Sci. Pollut. Res. 25, 8688–8700 (2018). https://doi.org/10.1007/s11356-017-1189-2

    Article  MathSciNet  Google Scholar 

  60. Ahmed, M.B.; Zhou, J.L.; Ngo, H.H., et al.: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 214, 836–851 (2016). https://doi.org/10.1016/j.biortech.2016.05.057

    Article  Google Scholar 

  61. Wei, J.; Tu, C.; Yuan, G., et al.: Carbon-coated montmorillonite nanocomposite for the removal of chromium(VI) from aqueous solutions. J. Hazard Mater. 368, 541–549 (2019). https://doi.org/10.1016/j.jhazmat.2019.01.080

    Article  Google Scholar 

  62. Lan, S.; Wu, X.; Li, L., et al.: Synthesis and characterization of hyaluronic acid-supported magnetic microspheres for copper ions removal. Colloids Surf. Physicochem. Eng. Asp. 425, 42–50 (2013). https://doi.org/10.1016/j.colsurfa.2013.02.059

    Article  Google Scholar 

  63. Li, N.; Yin, M.; Tsang, D.C.W., et al.: Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: a comparison between raw and modified biochar. Sci. Total Environ. (2019). https://doi.org/10.1016/j.scitotenv.2019.134115

    Article  Google Scholar 

  64. Quan, H.; Cheng, B.; Xiao, Y.; Lei, S.: Composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016)

    Article  Google Scholar 

  65. Li, X.; He, X.; Wang, H.; Liu, Y.: Characteristics and long-term effects of stabilized nanoscale ferrous sulfide immobilized hexavalent chromium in soil. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.122089

    Article  Google Scholar 

  66. Ma, M.; Du, Y.; Bao, S., et al.: Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.141490

    Article  Google Scholar 

  67. Wu, J.; Huang, D.; Liu, X., et al.: Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard Mater. 348, 10–19 (2018). https://doi.org/10.1016/j.jhazmat.2018.01.011

    Article  Google Scholar 

  68. Zahedifar, M.; Seyedi, N.; Shafiei, S.; Basij, M.: Surface-modified magnetic biochar: highly efficient adsorbents for removal of Pb(ΙΙ) and Cd(ΙΙ). Mater. Chem. Phys. 271, 124860 (2021). https://doi.org/10.1016/j.matchemphys.2021.124860

    Article  Google Scholar 

  69. Wang, L.; Li, Z.; Wang, Y., et al.: Performance and mechanisms for remediation of Cd(II) and As(III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects. Sci. Total Environ. 750, 141672 (2021). https://doi.org/10.1016/j.scitotenv.2020.141672

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 52170147). The authors appreciate the editor and anonymous reviewers for their careful work and thoughtful suggestions that have helped improve this paper substantially.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the concept and design of the study. Material preparation, data collection and analysis were performed by XL, QZ, GC and ZW. The first draft of the manuscript was written by XL and edited by YL. All authors read and approved the final manuscript.

Data Availability Statement

The data sets supporting the results of this article are included within the article and its additional files.

Corresponding author

Correspondence to Yangsheng Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to Publish

The author confirms agrees to publication in the Journal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3641 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Q., Cui, G. et al. Performance and Mechanism of a Green and Sustainable γ-nFe2O3-Based Magnetic Biochar for the Effective Adsorption of Cadmium. Arab J Sci Eng 49, 165–179 (2024). https://doi.org/10.1007/s13369-023-07821-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07821-w

Keywords

Navigation