Skip to main content
Log in

Hardware Design of FPGA-Based Embedded Heuristic Optimization Technique for Solving a Robotic Problem: IC-PSO

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a hardware design that runs the PSO algorithm at the micro level is carried out using FPGA technology, which facilitates prototyping and testing of integrated circuit systems. In this way, a high rate of acceleration has been achieved for swarm algorithms that perform stochastic search and whose calculation time is not suitable for real-time systems. For this, the inverse kinematics problem, which is used in the robotics field and which forms the basis of the robot control system, is solved for a 7-joint serial robot manipulator. Since the study aims to compare software-based calculations and hardware-based calculations, the results are presented in a comparative way with the results obtained with Matlab software. The tests have been performed in the study revealed two important situations. Firstly, the biggest handicap of algorithms such as PSO that reach a result by searching in a certain solution space is that the solution times are not suitable for real-time applications. The other is that FPGA can be used as a prototyping device for real-time applications due to its speed and hardware-based running. Because according to the test results, FPGA has accelerated the calculations up to 1000 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dörfler, K.; Dielemans, G.; Lachmayer, L.; Recker, T.; Raatz, A.; Lowke, D.; Gerke, M.: Additive Manufacturing using mobile robots: opportunities and challenges for building construction. Cem. Concr. Res. 158, 1–13 (2022)

    Article  Google Scholar 

  2. Brahmia, B.; Maarouf, S.; Jacqueline, T.; Cristobal, O.; Philippe, S.; Mohammad, H.: Adaptive control of a 7-DOF exoskeleton robot with uncertainties on kinematics and dynamics. Eur. J. Control. 42, 77–87 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Iliukhin, V.; Mitkovskii, K.; Bizyanova, D.: The modeling of inverse kinematics for 5 DOF manipulator. Proc. Eng. 176, 498–505 (2017)

    Article  Google Scholar 

  4. Kucuk, S.; Bingul, Z.: Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl. Math. Model 38, 1983–1999 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. El-Sherbiny, A.; El-Hosseini, M.; Haikal, A.: A new ABC variant for solving inverse kinematics problem in 5 DOF robot arm. Appl. Soft Comput. 73, 24–38 (2018)

    Article  Google Scholar 

  6. Zhang, Y.; Zhou, Y.; Zhou, G.; Luo, Q.; Zhu, B.: A Curve Approximation approach using bio-inspired polar coordinate bald eagle search algorithm. Int. J. Comput. Intell. Syst. 15, 1–25 (2022)

    Article  Google Scholar 

  7. Köker, R.: A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Inf. Sci. 222, 528–543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ayyıldız, M.; Çetinkaya, K.: Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator. Neural Comput. Appl. 36, 825–836 (2016)

    Article  Google Scholar 

  9. Abainiave, K.; Ali, Y.: Bio-inspired approach for inverse kinematics of 6-DOF robot manipulator with obstacle avoidance. In: International conference on pattern analysis and intelligent systems, 2018

  10. Dereli, S.; Köker, R.: A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm. Artif. Intell. Rev. 53, 949–964 (2020)

    Article  Google Scholar 

  11. Dereli, S.; Köker, R.: Iw-PSO approach to the inverse kinematics problem solution of a 7-DOF serial robot manipulator. Sigma 36, 77–85 (2018)

    Google Scholar 

  12. Sancaktar, I.; Tuna, B.; Ulutas, M.: Inverse kinematics application on medical robot using adapted PSO method. Eng. Sci. Technolo. An Int. J. 21, 1006–1010 (2018)

    Article  Google Scholar 

  13. Zhang, L.; Xiao, N.: A novel artificial bee colony algorithm for inverse kinematics calculation of 7-DOF serial manipulators. Soft. Comput. 23, 3269–3277 (2019)

    Article  Google Scholar 

  14. Rokbani, N.; Casals, A.; Alimi, A.: IK-FA, a new heuristic inverse kinematics solver using firefly algorithm. In: Computational Intelligence Applications in Modeling and Control, pp. 369–395, 2015.

  15. Zeng, K.; Ma, Q.; Wu, J.; Chen, Z.; Shen, T.; Yan, C.: FPGA-based accelerator for object detection: a comprehensive survey. The J. Supercomput. 78, 14096–14136 (2022)

    Article  Google Scholar 

  16. Naru, E.; Saini, H.; Sharma, M.: A recent review on lightweight cryptography in IoT. In: International Conference on I-SMAC, 2017

  17. Tuncer, A.; Yıldırım, M.: Design and implementation of a genetic algorithm IP core on an FPGA for path planning of mobile robots. Turk. J. Elec. Eng. Comp. Sci. 24, 5055–5067 (2016)

    Article  Google Scholar 

  18. Allaire, F.; Tarbouchi, M.; Labonté, G.; Fusina, G.: FPGA implementation of genetic algorithm for UAV real-time path planning. J. Intell. Robot. Syst. 54, 495–510 (2009)

    Article  Google Scholar 

  19. Alabdo, A.; Garcia, J.P.; Pomares, J.; Torres, F.: FPGA-based architecture for direct visual control robotic systems. Mechatronics 39, 204–216 (2016)

    Article  Google Scholar 

  20. Irgens, P.; Bader, C.; Lé, T.; Saxena, D.; Ababei, C.: An efficient and cost effective FPGA based implementation of the Viola-Jones face detection algorithm. HardwareX 1, 68–75 (2017)

    Article  Google Scholar 

  21. Dereli, S.: Micro-sized parallel system design proposal for the solution of robotics based engineering problem. Microsyst. Technol. 27, 4217–4226 (2021)

    Article  Google Scholar 

  22. Simas, H.; Di Gregorio, R.: Collision avoidance for redundant 7-DOF robots using a critically damped dynamic approach. Robotics 11, 1–19 (2022)

    Article  Google Scholar 

  23. Chen, X.; Zhao, B.; Wang, Y.; Xu, S.; Gao, X.: Control of a 7-DOF robotic arm system with an SSVEP-based BCI. Int. J. Neural Syst. 28, 1–15 (2018)

    Article  Google Scholar 

  24. Kucuk, S.; Bingul, Z.: Comparative study of performance indices for fundamental robot manipulators. Robot. Autonom. Syst. 54, 567–573 (2006)

    Article  Google Scholar 

  25. Toshani, M.: Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming: a Lyapunov-based approach. Robot. Auton. Syst. 62, 766–781 (2014)

    Article  Google Scholar 

  26. Kennedy, J.; Eberhart, R.: Particle Swarm optimization. In: International Conference on Neural Networks, Perth, Australia, 1995.

  27. Yang, H.; Zhang, J.; Sun, J.; Yu, L.: Review of advanced FPGA architectures and technologies. J. Electr. (China) 31, 371–393 (2014)

    Article  Google Scholar 

  28. Petrica, L.: FPGA optimized cellular automaton random number generator. J. Parallel Distrib. Comput. 111, 251–259 (2018)

    Article  Google Scholar 

  29. Li, J.; Fang, J.; Li, B.; Zhao, Y.: Study of CORDIC algorithm based on FPGA. In: Chinese Control and Decision Conference (CCDC), 2016

  30. Harrison, K.; Engelbrecht, A.; Ombuki-Berman, B.: Inertia weight control strategies for particle swarm optimization. Swarm Intell. 10, 267–305 (2016)

    Article  Google Scholar 

  31. Jiao, B.; Lian, Z.; Gu, X.: A dynamic inertia weight particle swarm optimization algorithm. Chaos Solit. Fract. 37, 698–705 (2008)

    Article  MATH  Google Scholar 

  32. Gupta, V.; Chittawadigi, R.; Saha, S.: RoboAnalyzer: robot visualization software for robot technicians. In: Advances in Robotics, 2017

  33. Monmasson, E.; Idkhajine, L.; Cirstea, M.; Bahri, I.; Tisan, A.; Naouar, M.W.: FPGAs in industrial control applications. IEEE Trans. Industr. Inf. 28, 224–243 (2011)

    Article  Google Scholar 

  34. El-Sherbiny, A.; Elhosseini, M.A.; Haikal, A.Y.: A comparative study of soft computing methods to solve inverse kinematics problem. Ain Shams Eng. J. 9, 2535–2548 (2017)

    Article  Google Scholar 

  35. Kucuk, S.; Bingül, Z.: Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl. Math. Model. 38, 1983–1999 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Momani, S.M.; Hammour, Z.; Alsmadi, O.: Solution of inverse kinematics problem using genetic algorithms. Appl. Math. Inf. Sci 10, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  37. Wichapong, K.; Bureerat, S.; Pholdee, N.: Solving inverse kinematics of robot manipulators by means of meta-heuristic optimisation. IOP Conf. Series: Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/370/1/012056

    Article  Google Scholar 

  38. Lopez-Franco, C.; Hernandez-Barragan, J.; Alanis, A.Y.; Arana-DanieL, N.: A soft computing approach for inverse kinematics of robot manipulator. Eng. Appl. Artif. Intell. 74, 104–120 (2018)

    Article  Google Scholar 

  39. Collinsm, T.J.; Shen, W.M.: Particle swarm optimization for high-DOF inverse kinematics. In: IEEE International Conference on Control, Automation and Robotics, 2017

  40. Dalmedico, J.F.; Mendonça,M.; Souza, L.B.; Barros, R.V.P.D.; Chrun, I.R.: Artificial neural networks applied in the solution of the inverse kinematics problem of a 3D manipulator arm. In: International joint conference on neural networks (IJCNN) (pp. 1–6). IEEE, 2018

  41. Dereli, S.: A new modified grey wolf optimization algorithm proposal for a fundamental engineering problem in robotics. Neural Comput. Appl. 33, 14119–14131 (2021)

    Article  Google Scholar 

  42. Dereli, S.: A Novel approach based on average swarm intelligence to improve the whale optimization algorithm. Arab. J. Sci. Eng. 47, 1763–1776 (2022)

    Article  Google Scholar 

  43. Lee, H.; Kim, K.; Kwon, Y.; Hong, E.: Real-time particle swarm optimization on FPGA for the optimal message-chain structure. Electronics (2018). https://doi.org/10.3390/electronics7110274

    Article  Google Scholar 

  44. Li, Y.; Liu, Z.;Xu, K.; Yu, H.; Ren, F.: A 7.663-TOPS 8.2-W energy-efficient FPGA accelerator for binary convolutional neural networks. In: FPGA, pp. 290–291, 2017

  45. Karakuzu, C.; Karakaya, F.; Çavuşlu, M.A.: FPGA implementation of neuro-fuzzy system with improved PSO learning. Neural Netw. 79, 128–140 (2016)

    Article  Google Scholar 

  46. Li, R.; Huang, X.; Tian, S.; Hu, R.; He, D.; Gu, Q.: FPGA-based design and implementation of real-time robot motion planning. In International Conference on Information Science and Technology (ICIST), IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Dereli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereli, S., Köker, R. Hardware Design of FPGA-Based Embedded Heuristic Optimization Technique for Solving a Robotic Problem: IC-PSO. Arab J Sci Eng 48, 10441–10455 (2023). https://doi.org/10.1007/s13369-023-07655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07655-6

Keywords

Navigation