Skip to main content
Log in

Significance of Ferric Chloride Addition on the Treatment Performance of Cloth-Media MBR Treating Municipal Wastewater

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Municipal wastewater treatment saves fresh water resources from contamination and provides a sustainable approach for reuse in water-stress regions. Herein, the impact of ferric chloride addition to cloth-media MBR treating municipal wastewater was tested for treatment performance, membrane filterability and sludge particle size distribution. Dosing of 7.5 and 15 mg/l of FeCl3 did not show any significant impacts on the removal of chemical oxygen demand and ammonia compared to the control test. However, the addition of ferric chloride increases percentage removal of total phosphorous from 33.5 to 39.5 and 46.5% at doses of 7.5 and 15 mgFeCl3/l, respectively. The ferric chloride addition did not enhance membrane filterability or flocculation of the sludge particles. On batch and Jar test experiments, the removal of total phosphorous reached up to 86% at dose of 120 mgFeCl3/l which shows that each mg of P needs 8 mg of Fe (22 mgFeCl3). The batch and jar test experiments did not show any significant impacts of ferric chloride up to 120 mg/l on the biological activity and particle size distribution of the sludge. To enhance phosphorus removal in the MBR systems, coagulant addition to the final permeate is recommended to avoid any negative impacts on the flux rate and to minimize coagulant addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. El-Shafai, S.A.; Abdelfattah, I.; Nasr, F.A.; Fawzy, M.E.: Lemna gibba and Azolla filiculoides for sewage treatment and plant protein production. Res. J. Pharm. Biol. Chem. Sci. 7, 1869–1876 (2016)

    Google Scholar 

  2. El-Qelish, M.; Chatterjee, P.; Dessì, P.; Kokko, M.; El-Gohary, F.; Abo-Aly, M.; Rintala, J.: Bio-hydrogen production from sewage sludge: screening for pretreatments and semi-continuous reactor operation. Waste and Biomass Valorization. 11, 4225–4234 (2020). https://doi.org/10.1007/s12649-019-00743-5

    Article  Google Scholar 

  3. Ferraro, A.; Colangelo, F.; Farina, I.; Race, M.; Cioffi, R.; Cheeseman, C.; Fabbricino, M.: Cold-bonding process for treatment and reuse of waste materials: Technical designs and applications of pelletized products. Crit. Rev. Environ. Sci. Technol. 51, 2197–2231 (2021)

    Google Scholar 

  4. Nasr, F.; El-Shafai, S.A.; Abdelfadil, A.S.: Decentralized domestic wastewater management as unconventional water resource for agricultural purposes. Egypt. J. Chem. 65, 1–2 (2022)

    Google Scholar 

  5. Kalaimurugan, D.; Balamuralikrishnan, B.; Govindarajan, R.K.; Al-Dhabi, N.A.; Valan Arasu, M.; Vadivalagan, C.; Venkatesan, S.; Kamyab, H.; Chelliapan, S.; Khanongnuch, C.: Production and characterization of a novel biosurfactant molecule from bacillus safensis YKS2 and assessment of its efficiencies in wastewater treatment by a directed metagenomic approach. Sustainability. 14, 2142 (2022)

    Google Scholar 

  6. Krishnan, S.; Nasrullah, M.; Kamyab, H.; Suzana, N.; Munaim, M.S.A.; Wahid, Z.A.; Ali, I.H.; Salehi, R.; Chaiprapat, S.: Fouling characteristics and cleaning approach of ultrafiltration membrane during xylose reductase separation. Bioprocess Biosyst. Eng. 22, 1–12 (2022)

    Google Scholar 

  7. Akkoyunlu, B.; Daly, S.; Casey, E.: Membrane bioreactors for the production of value-added products: recent developments, challenges and perspectives. Bioresour. Technol. 341, 125793 (2021). https://doi.org/10.1016/j.biortech.2021.125793

    Article  Google Scholar 

  8. Deschamps, L.; Merlet, D.; Lemaire, J.; Imatoukene, N.; Filali, R.; Clément, T.; Lopez, M.; Theoleyre, M.A.: Excellent performance of anaerobic membrane bioreactor in treatment of distillery wastewater at pilot scale. J. Water Process Eng. (2021). https://doi.org/10.1016/j.jwpe.2021.102061

    Article  Google Scholar 

  9. Hoinkis, J.; Deowan, S.A.; Panten, V.; Figoli, A.; Huang, R.R.; Drioli, E.: Membrane bioreactor (MBR) technology–a promising approach for industrial water reuse. Procedia Eng. 33, 234–241 (2012)

    Google Scholar 

  10. Holler, S.; Trösch, W.: Treatment of urban wastewater in a membrane bioreactor at high organic loading rates. J. Biotechnol. 92, 95–101 (2001)

    Google Scholar 

  11. Khongnakorn, W.; Wisniewski, C.; Pottier, L.; Vachoud, L.: Physical properties of activated sludge in a submerged membrane bioreactor and relation with membrane fouling. Sep. Purif. Technol. 55, 125–131 (2007)

    Google Scholar 

  12. Massé, A.; Spérandio, M.; Cabassud, C.: Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time. Water Res. 40, 2405–2415 (2006)

    Google Scholar 

  13. Yang, S.; Yang, F.; Fu, Z.; Lei, R.: Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresour. Technol. 100, 2369–2374 (2009)

    Google Scholar 

  14. Sohn, W.; Guo, W.; Ngo, H.H.; Deng, L.; Cheng, D.; Zhang, X.: A review on membrane fouling control in anaerobic membrane bioreactors by adding performance enhancers. J. Water Process Eng. 40, 101867 (2021). https://doi.org/10.1016/j.jwpe.2020.101867

    Article  Google Scholar 

  15. Fortunato, L.; Bucs, S.; Linares, R.V.; Cali, C.; Vrouwenvelder, J.S.; Leiknes, T.: Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel. J. Memb. Sci. 524, 673–681 (2017)

    Google Scholar 

  16. Wang, L.; Wang, X.; Fukushi, K.: Effects of operational conditions on ultrafiltration membrane fouling. Desalination 229, 181–191 (2008)

    Google Scholar 

  17. Gkotsis, P.K.; Batsari, E.L.; Peleka, E.N.; Tolkou, A.K.; Zouboulis, A.I.: Fouling control in a lab-scale MBR system: comparison of several commercially applied coagulants. J. Environ. Manage. 203, 838–846 (2017)

    Google Scholar 

  18. Li, L.; Zhang, J.; Tian, Y.; Sun, L.; Zuo, W.; Li, H.; Li, A.; Wiesner, M.R.: A novel approach for fouling mitigation in anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR) by integrating worm predation. Environ. Int. 127, 615–624 (2019)

    Google Scholar 

  19. Liu, H.; Gu, J.; Wang, S.; Zhang, M.; Liu, Y.: Performance, membrane fouling control and cost analysis of an integrated anaerobic fixed-film MBR and reverse osmosis process for municipal wastewater reclamation to NEWater-like product water. J. Memb. Sci. 593, 117442 (2020)

    Google Scholar 

  20. Yao, M.; Ladewig, B.; Zhang, K.: Identification of the change of soluble microbial products on membrane fouling in membrane bioreactor (MBR). Desalination 278, 126–131 (2011)

    Google Scholar 

  21. Lin, H.J.; Xie, K.; Mahendran, B.; Bagley, D.M.; Leung, K.T.; Liss, S.N.; Liao, B.Q.: Factors affecting sludge cake formation in a submerged anaerobic membrane bioreactor. J. Memb. Sci. 361, 126–134 (2010)

    Google Scholar 

  22. Wang, Q.; Wang, Z.; Zhu, C.; Mei, X.; Wu, Z.: Assessment of SMP fouling by foulant–membrane interaction energy analysis. J. Memb. Sci. 446, 154–163 (2013)

    Google Scholar 

  23. Drews, A.; Vocks, M.; Bracklow, U.; Iversen, V.; Kraume, M.: Does fouling in MBRs depend on SMP? Desalination 231, 141–149 (2008)

    Google Scholar 

  24. Li, R.; Gao, B.; Wang, W.; Yue, Q.; Wang, Y.: Floc properties and membrane fouling in coagulation/ultrafiltration process for the treatment of Xiaoqing River: the role of polymeric aluminum-polymer dual-coagulants. Chemosphere 243, 125391 (2020)

    Google Scholar 

  25. Teng, J.; Shen, L.; Xu, Y.; Chen, Y.; Wu, X.-L.; He, Y.; Chen, J.; Lin, H.: Effects of molecular weight distribution of soluble microbial products (SMPs) on membrane fouling in a membrane bioreactor (MBR): novel mechanistic insights. Chemosphere 248, 126013 (2020)

    Google Scholar 

  26. Wu, J.; Chen, F.; Huang, X.; Geng, W.; Wen, X.: Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor. Desalination 197, 124–136 (2006)

    Google Scholar 

  27. Tang, J.; Jia, H.; Mu, S.; Gao, F.; Qin, Q.; Wang, J.: Characterizing synergistic effect of coagulant aid and membrane fouling during coagulation-ultrafiltration via in-situ Raman spectroscopy and electrochemical impedance spectroscopy. Water Res. 172, 115477 (2020)

    Google Scholar 

  28. Psoch, C.; Schiewer, S.: Resistance analysis for enhanced wastewater membrane filtration. J. Memb. Sci. 280, 284–297 (2006)

    Google Scholar 

  29. Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X.: Membrane cleaning in membrane bioreactors: a review. J. Memb. Sci. 468, 276–307 (2014)

    Google Scholar 

  30. Alshahri, A.H.; Fortunato, L.; Ghaffour, N.E.; Leiknes, T.O.: Advanced coagulation using in-situ generated liquid ferrate, Fe (VI), for enhanced pretreatment in seawater RO desalination during algal blooms. Sci. Total Environ. 685, 1193–1200 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.286

    Article  Google Scholar 

  31. Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.; Lin Han, Z.; Shuang, Li.; Bai, G.: Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination 272, 1–8 (2011). https://doi.org/10.1016/j.desal.2011.01.051

    Article  Google Scholar 

  32. Choksuchart, P.; Héran, M.; Grasmick, A.: Ultrafiltration enhanced by coagulation in an immersed membrane system. Desalination 145, 265–272 (2002)

    Google Scholar 

  33. Kweon, J.H.; Hur, H.-W.; Seo, G.-T.; Jang, T.-R.; Park, J.-H.; Choi, K.Y.; Kim, H.S.: Evaluation of coagulation and PAC adsorption pretreatments on membrane filtration for a surface water in Korea: a pilot study. Desalination 249, 212–216 (2009)

    Google Scholar 

  34. Leiknes, T.: The effect of coupling coagulation and flocculation with membrane filtration in water treatment: a review. J. Environ. Sci. 21, 8–12 (2009)

    Google Scholar 

  35. Dialynas, E.; Diamadopoulos, E.: Integration of immersed membrane ultrafiltration with coagulation and activated carbon adsorption for advanced treatment of municipal wastewater. Desalination 230, 113–127 (2008)

    Google Scholar 

  36. Yoon, S.-H.; Collins, J.H.: A novel flux enhancing method for membrane bioreactor (MBR) process using polymer. Desalination 191, 52–61 (2006)

    Google Scholar 

  37. Kim, H.-G.; Jang, H.-N.; Kim, H.-M.; Lee, D.-S.; Chung, T.-H.: Effect of an electro phosphorous removal process on phosphorous removal and membrane permeability in a pilot-scale MBR. Desalination 250, 629–633 (2010)

    Google Scholar 

  38. Song, K.-G.; Kim, Y.; Ahn, K.-H.: Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor. Desalination 221, 467–474 (2008)

    Google Scholar 

  39. Huang, S.; Shi, X.; Bi, X.; Lee, L.Y.; Ng, H.Y.: Effect of ferric hydroxide on membrane fouling in membrane bioreactor treating pharmaceutical wastewater. Bioresour. Technol. 292, 121852 (2019)

    Google Scholar 

  40. Zhang, H.; Sun, B.; Zhao, X.; Gao, Z.: Effect of ferric chloride on fouling in membrane bioreactor. Sep. Purif. Technol. 63, 341–347 (2008)

    Google Scholar 

  41. Ngo, H.-H.; Guo, W.: Membrane fouling control and enhanced phosphorus removal in an aerated submerged membrane bioreactor using modified green bioflocculant. Bioresour. Technol. 100, 4289–4291 (2009)

    Google Scholar 

  42. Park, J.; Yamashita, N.; Tanaka, H.: Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR. Chemosphere 197, 467–476 (2018)

    Google Scholar 

  43. Deng, L.; Guo, W.; Ngo, H.H.; Wang, X.C.; Hu, Y.; Chen, R.; Cheng, D.; Guo, S.; Cao, Y.: Application of a specific membrane fouling control enhancer in membrane bioreactor for real municipal wastewater treatment: sludge characteristics and microbial community. Bioresour. Technol. 312, 123612 (2020)

    Google Scholar 

  44. Lee, W.-N.; Chang, I.-S.; Hwang, B.-K.; Park, P.-K.; Lee, C.-H.; Huang, X.: Changes in biofilm architecture with addition of membrane fouling reducer in a membrane bioreactor. Process Biochem. 42, 655–661 (2007)

    Google Scholar 

  45. Gkotsis, P.K.; Mitrakas, M.M.; Tolkou, A.K.; Zouboulis, A.I.: Batch and continuous dosing of conventional and composite coagulation agents for fouling control in a pilot-scale MBR. Chem. Eng. J. 311, 255–264 (2017)

    Google Scholar 

  46. Koseoglu, H.; Yigit, N.O.; Iversen, V.; Drews, A.; Kitis, M.; Lesjean, B.; Kraume, M.: Effects of several different flux enhancing chemicals on filterability and fouling reduction of membrane bioreactor (MBR) mixed liquors. J. Memb. Sci. 320, 57–64 (2008)

    Google Scholar 

  47. Tian, J.; Liang, H.; Li, X.; You, S.; Tian, S.; Li, G.: Membrane coagulation bioreactor (MCBR) for drinking water treatment. Water Res. 42, 3910–3920 (2008)

    Google Scholar 

  48. Nazmkhah, A.; Alizad Oghyanous, F.; Etemadi, H.; Yegani, R.: Optimizing dose of coagulant and pH values for membrane fouling control in a submerged membrane bioreactor. J. Chem. Technol. Biotechnol. (2022). https://doi.org/10.1002/jctb.7148

    Article  Google Scholar 

  49. Zahid, W.M.; El-Shafai, S.A.: Use of cloth-media filter for membrane bioreactor treating municipal wastewater. Bioresour. Technol. 102, 2193–2198 (2011). https://doi.org/10.1016/j.biortech.2010.09.116

    Article  Google Scholar 

  50. Zahid, W.M.; El-Shafai, S.A.: Impacts of alum addition on the treatment efficiency of cloth-media MBR. Desalination 301, 53–58 (2012)

    Google Scholar 

  51. APHA, A.: WEF, Standard Methods for the Examination of Water and Wastewater, a joint publication of the American Public Health Association (APHA) the American Water Works Association (AWWA), and the Water Environment Federation (WEF). (2017)

  52. Metcalf, W.; Eddy, C.: Metcalf and Eddy Wastewater Engineering: Treatment and Reuse Wastewater Eng. Treat. Reuse. McGraw Hill, New York, NY (2003)

    Google Scholar 

  53. Sari Erkan, H.; Çağlak, A.; Soysaloglu, A.; Takatas, B.; Onkal Engin, G.: Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment. J. Water Process Eng. (2020). https://doi.org/10.1016/j.jwpe.2020.101631

    Article  Google Scholar 

  54. Egyptian Code ECP 501–2005: Egyptian standards for reuse of the treated sewage in agriculture. 2005 (2005)

  55. Ministerial decree no 304/3: 2006 for establishment of National Saudi standards for reuse of the treated sewage in agriculture irrigation, ministry of water and electricity. Kingdom of Saudi Arabia. 2006 (2006)

  56. Ge, J.; Guha, B.; Lippincott, L.; Cach, S.; Wei, J.; Su, T.L.; Meng, X.: Challenges of arsenic removal from municipal wastewater by coagulation with ferric chloride and alum. Sci. Total Environ. 725, 138351 (2020). https://doi.org/10.1016/j.scitotenv.2020.138351

    Article  Google Scholar 

  57. Taherizadeh, H.; Hashemifard, S.A.; Izadpanah, A.A.; Ismail, A.F.: Investigation of fouling of surface modified Polyvinyl chloride hollow fiber membrane bioreactor via Zinc oxide-nanoparticles under coagulant for municipal wastewater treatment. J. Environ. Chem. Eng. 9, 105835 (2021). https://doi.org/10.1016/j.jece.2021.105835

    Article  Google Scholar 

  58. Philips, S.; Rabaey, K.; Verstraete, W.: Impact of iron salts on activated sludge and interaction with nitrite or nitrate. Bioresour. Technol. 88, 229–239 (2003)

    Google Scholar 

  59. Asensi, E.; Zambrano, D.; Alemany, E.; Aguado, D.: Effect of the addition of precipitated ferric chloride on the morphology and settling characteristics of activated sludge flocs. Sep. Purif. Technol. 227, 115711 (2019). https://doi.org/10.1016/j.seppur.2019.115711

    Article  Google Scholar 

  60. Li, J.; Wang, S.; Wang, Z.; Zheng, Z.; Zhang, J.: Assessing biomass activities, sludge characteristics and membrane fouling in the University of Cape Town membrane bioreactor under ferric chloride addition. Environ. Technol. Innov. 23, 101796 (2021). https://doi.org/10.1016/j.eti.2021.101796

    Article  Google Scholar 

  61. Guo, W.; Ngo, H.-H.; Vigneswaran, S.; Dharmawan, F.; Nguyen, T.T.; Aryal, R.: Effect of different flocculants on short-term performance of submerged membrane bioreactor. Sep. Purif. Technol. 70, 274–279 (2010)

    Google Scholar 

  62. Torres, A.; Hemmelmann, A.; Vergara, C.; Jeison, D.: Application of two-phase slug-flow regime to control flux reduction on anaerobic membrane bioreactors treating wastewaters with high suspended solids concentration. Sep. Purif. Technol. 79, 20–25 (2011). https://doi.org/10.1016/j.seppur.2011.03.006

    Article  Google Scholar 

  63. Li, X.; Liu, Y.; Liu, F.; Liu, A.; Feng, Q.: Comparison of ferric chloride and aluminum sulfate on phosphorus removal and membrane fouling in MBR treating BAF effluent of municipal wastewater. J. Water Reuse Desalin. 7, 442–448 (2017). https://doi.org/10.2166/wrd.2016.151

    Article  Google Scholar 

  64. Zhang, Z.; Wang, Y.; Leslie, G.L.; Waite, T.D.: Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Res. 69, 210–222 (2015). https://doi.org/10.1016/j.watres.2014.11.011

    Article  Google Scholar 

  65. Rakhmania, Kamyab H.; Yuzir, M.A.; Abdullah, N.; Quan, L.M.; Riyadi, F.A.; Marzouki, R.: Recent applications of the electrocoagulation process on agro-based industrial wastewater: a review. Sustainability. 14, 19–85 (2022)

    Google Scholar 

  66. Abou-Elela, S.I.; Fawzy, M.E.; El-Shafai, S.A.: Treatment of hazardous wastewater generated from metal finishing and electro-coating industry via self-coagulation: case study. Water Environ. Res. 93, 1476–1486 (2021)

    Google Scholar 

  67. Zhang, M.; Zheng, K.; Jin, J.; Yu, X.; Qiu, L.; Ding, S.; Lu, H.; Cai, J.; Zheng, P.: Effects of Fe (II)/P ratio and pH on phosphorus removal by ferrous salt and approach to mechanisms. Sep. Purif. Technol. 118, 801–805 (2013)

    Google Scholar 

  68. Raptopoulou, C.; Kalaitzidou, K.; Tolkou, A.; Palasantza, P.-A.; Mitrakas, M.; Zouboulis, A.: Phosphate removal from effluent of secondary wastewater treatment: characterization of recovered precipitates and potential re-use as fertilizer. Waste and biomass valorization. 7, 851–860 (2016)

    Google Scholar 

  69. Clark, T.; Burgess, J.E.; Stephenson, T.; Arnold-Smith, A.K.: The influence of iron-based co-precipitants on activated sludge biomass. Process Saf. Environ. Prot. 78, 405–410 (2000)

    Google Scholar 

  70. Dong, H.; Gao, B.; Yue, Q.; Wang, Y.; Li, Q.: Effect of pH on floc properties and membrane fouling in coagulation–Ultrafiltration process with ferric chloride and polyferric chloride. Chemosphere 130, 90–97 (2015)

    Google Scholar 

  71. Wilén, B.-M.; Lumley, D.; Mattsson, A.; Mino, T.: Relationship between floc composition and flocculation and settling properties studied at a full scale activated sludge plant. Water Res. 42, 4404–4418 (2008)

    Google Scholar 

Download references

Acknowledgements

This research was carried out and financed within the framework of the research activities of "Prince Khalid Bin Sultan Chair for Water Research" at the Civil Engineering Department of King Saud University. The authors would like to thank Mohamed Ikbal for his assistance during the follow-up of the system and lab analysis.

Author information

Authors and Affiliations

Authors

Contributions

SAE-S Conceptualization; Funding acquisition; Writing; Investigation; Review& editing. MEQ Writing; Review & editing, and preparing the final manuscript version. WMZ Conceptualization; Funding acquisition; Writing; Investigation; Review & editing.

Corresponding author

Correspondence to Mohamed El-Qelish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shafai, S.A., El-Qelish, M. & Zahid, W.M. Significance of Ferric Chloride Addition on the Treatment Performance of Cloth-Media MBR Treating Municipal Wastewater. Arab J Sci Eng 48, 8723–8736 (2023). https://doi.org/10.1007/s13369-022-07373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07373-5

Keywords

Navigation