Skip to main content
Log in

A Combinatorial Approach of the Differential Evolution and Wingsuit Flying Search to Optimize the Free Convection in an Enclosure with Interior Perforated Louvers

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The free convection in a divided enclosure is an ongoing attractive research topic due to its occurrence in various thermal applications, which can be utilized as a dual-purpose application to suppress or enhance the heat transfer rate. In this investigation, a vertical enclosure divided by adiabatic louvers is geometrically modified. To this end, circular perforations are made along the louvers. Then, the steady laminar free convection in the modified divided enclosure is experimentally investigated versus design parameters. The design parameters are the Rayleigh number (7 × 103 ≤ Ra ≤ 1.45 × 104), louver’s slant angle (0° ≤ φ ≤ 150°), perforation’s diameter to louver’s width ratio (0.2 ≤ d/w ≤ 0.6) as well as enclosure’s aspect ratio (7.8723 ≤ Ar ≤ 9.3671). After that, a mathematical correlation is extracted for the mean Nusselt number (Num) versus the design parameters. In the following, the differential evolution (DE) algorithm and wingsuit flying search (WFS) optimization algorithm are combined in the frame of a novel combinatorial optimization algorithm. The combinatorial algorithm is then employed to optimize the obtained mathematical correlation. It was reported that the maximum heat transfer rate corresponds to the highest level of the Rayleigh number, d/w ratio as well as Ar. Moreover, for the minimum heat transfer rate, the Rayleigh number, d/w ratio as well as Ar, must be at the lowest level. The maximum and minimum heat transfer rates both occur at the same critical value of the louver’s angle (φcrit ≈ 90°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A\) :

Aluminum’s surface area (m2)

ACO:

Ant colony optimization

ANN:

Artificial neural network

Ar:

Enclosure’s aspect ratio = H/W

\(A^{\prime}\) :

Area of the material mounted at the back of the temperature source (m2)

C p :

Specific heat capacity (J/kg K)

d :

Perforation’s diameter (mm)

DE:

Differential evolution

DFE:

Degree of freedom

FA–ACO:

Firefly algorithm–ant colony optimization

FA–DE:

Firefly algorithm–differential evolution

FIS:

Fuzzy inference system

H :

Enclosure’s height (mm)

h m :

Mean heat transfer coefficient (W/m2 K)

\(k\) :

Thermal conductivity (W/m K)

L :

Enclosure’s length or louver’s length (mm)

MRE:

Mean relative error

MSCA-TLBO:

Modified Sine_Cosine Algorithm-teaching_learning-based optimization

Num :

Mean Nusselt number

Q conv :

Mean convection heat transfer (W)

Q source :

Electrical heat input (W)

P :

Louvers' pitch (mm)

PSO:

Particle swarm optimization

R 2 :

Correlation determination

Ra:

Rayleigh number based on the enclosure’s width, \(= \frac{{g\beta (T_{{{\text{HW}}}} - T_{{{\text{CW}}}} )W^{3} }}{v\alpha }\)

RMSE:

Root-mean-square error

SA:

Simulated annealing

SSE:

Sum-squared error

t :

Louver’s thickness (mm)

T :

Temperature (K)

STD:

Standard deviation

w :

Louver’s width (mm)

W :

Enclosure’s width (mm)

WFS:

Wingsuit flying search

WFSSE:

Wingsuit flying search-spherical evolution

WOA:

Whale optimization algorithm

x :

Direction along the enclosure’s width

y :

Direction along the enclosure’s height

z :

Direction along the enclosure’s length

φ :

Louver’s slant angel (°)

ρ :

Density (kg/m3)

η :

Thermal performance

b:

Refers to the backward direction

C:

Refers to the cold temperature

d:

Refers to the downward direction

f:

Refers to the fluid

H:

Refers to the hot temperature

l:

Refers to the left-side direction

r:

Refers to the right-side direction

ref:

Refers to the reference condition

u:

Refers to the upward direction

References

  1. Hoogendooren, G.J.; Afgan, N.H.: Energy Conservation in Heating, Cooling and Ventilating Buildings. Hemisphere, Washington, DC (1978)

    Google Scholar 

  2. Yedder, R.B.; Du, Z.G.; Bilgen, E.: Heat transfer by natural convection in composite trombe wall solar collector. In: Proceedings of ASME, Solar Energy Technology, San Francisco, pp. 7–13 (1989)

  3. Incropera, F.P.: Convection heat transfer in electronic equipment cooling. ASME J. Heat Transf. 110, 1097–1111 (1988). https://doi.org/10.1115/1.3250613

    Article  Google Scholar 

  4. Laguerre, O.; Amara, S.B.; Flick, D.: Experimental study of heat transfer by natural convection in a closed cavity: application in a domestic refrigerator. J. Food Eng. 70, 523–537 (2005). https://doi.org/10.1016/j.jfoodeng.2004.10.007

    Article  Google Scholar 

  5. Avedissan, T.; Naylor, D.: Free convection heat transfer in an enclosure with an internal lowered blind. Int. J. Heat Mass Transf. 51, 289–293 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.042

    Article  Google Scholar 

  6. Collins, M.R.; Tashim, S.; Wright, J.L.: Determination of convective heat transfer for fenestration with between the glass lowered shades. Int. J. Heat Mass Transf. 51, 2742–2751 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.034

    Article  MATH  Google Scholar 

  7. Almeida, F.; Naylor, D.: Experimental study of free convection in a window with a heated between-panes blind. Energy Build. 43, 2647–2655 (2011). https://doi.org/10.1016/j.enbuild.2011.06.010

    Article  Google Scholar 

  8. Mehryan, S.A.M.; Ghalambaz, M.; Feeoj, R.K.; Hajjar, A.; Izadi, M.: Free convection in a trapezoidal enclosure divided by a flexible partition. To be published in Int. J. Heat Mass Transf. (2021)

  9. Varol, Y.; Oztop, H.; Pop, I.: Natural convection in a diagonally divided square cavity filled with a porous medium. Int. J. Therm. Sci. 48, 1405–1415 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.12.015

    Article  Google Scholar 

  10. Sathiyamoorthy, M.; Narasimman, S.: Control of flow and heat transfer in a porous enclosure due to an adiabatic thin fin on the hot wall. Transp. Porous Media 89, 421–440 (2011)

    Article  MathSciNet  Google Scholar 

  11. Jani, S.; Amini, M.; Mahmoodi, M.: Numerical study of free convection heat transfer in a square cavity with a fin attached to its cold wall. Heat Transf. Res. 42, 251–256 (2011). https://doi.org/10.1615/HeatTransRes.2011002695

    Article  Google Scholar 

  12. Yousefi, T.; Karami, A.; Ghashghaei, D.; Veysi, F.: An experimental investigation on the free convection heat transfer in a horizontal cavity consisting of flow diverters. Heat Transf. Asian Res. 41, 553–564 (2012). https://doi.org/10.1002/htj.21014

    Article  Google Scholar 

  13. Tasnim, S.H.; Mahmud, S.; Dutta, A.: Energy streamlines analyses on natural convection within porous square enclosure with internal obstructions. J. Therm. Sci. Eng. Appl. 5, 031008 (2013). https://doi.org/10.1115/1.4023603

    Article  Google Scholar 

  14. Liu, Y.; Lei, C.; Patterson, J.C.: Natural convection in a differentially heated cavity with two horizontal adiabatic fins on the sidewalls. Int. J. Heat Mass Transf. 72, 23–36 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.083

    Article  Google Scholar 

  15. Ma, J.; Xu, F.: Unsteady natural convection and heat transfer in a differentially heated cavity with a fin for high Rayleigh numbers. Appl. Therm. Eng. 99, 625–634 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.115

    Article  Google Scholar 

  16. Mousa, M.M.: Modeling of laminar buoyancy convection in a square cavity containing an obstacle. Bull. Malays. Math. Sci. Soc. 39, 483–498 (2016). https://doi.org/10.1007/s40840-015-0188-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Chordiya, J.S.; Sharma, R.V.: Conjugate natural convection in a fluid-saturated porous enclosure with two solid vertical partitions. Heat Transf. Asian Res. 47, 1031–1047 (2018). https://doi.org/10.1002/htj.21364

    Article  Google Scholar 

  18. Chordiya, J.S.; Sharma, R.V.: Numerical study on effect of corrugated diathermal partition on natural convection in a square porous cavity. J. Mech. Sci. Technol. 33, 2481–2491 (2019). https://doi.org/10.1007/s12206-019-0445-4

    Article  Google Scholar 

  19. Karki, P.; Yadav, A.K.; Arumuga, P.D.: Study of adiabatic obstacles on natural convection in a square cavity using Lattice Boltzmann method. J. Therm. Sci. Eng. Appl. 11, 034502 (2019). https://doi.org/10.1115/1.4041875

    Article  Google Scholar 

  20. Asl, A.K.; Hossainpour, S.; Rashidi, M.M.; Sheremet, M.A.; Yang, Z.: Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure. Int. J. Heat Mass Transf. 133, 729–744 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.156

    Article  Google Scholar 

  21. Shahnazari, M.R.; Abbasi, A.: Analysis of free surface enhancement in a medium with variable porosity. J. Porous Media 7, 1–8 (2004). https://doi.org/10.1615/JPorMedia.v7.i1.10

    Article  MATH  Google Scholar 

  22. Shahnazari, M.R.; Zia Bashar Hagh, M.: Theoretical and experimental investigation of the channeling effect in fluid flow through porous media. J. Porous Media 8, 115–124 (2005). https://doi.org/10.1615/JPorMedia.v8.i2.20

    Article  Google Scholar 

  23. Ben-Nakhi, A.; Chamkha, A.J.: Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer. Heat Transf. 50, 381–399 (2006). https://doi.org/10.1080/10407780600619907

    Article  Google Scholar 

  24. Ziabasharhagh, M.; Mosallat, F.; Shahnazari, M.R.: Experimental investigation of the permeability and inertial effect on fluid flow through homogeneous porous media. Iran. J. Chem. Chem. Eng. 46, 33–38 (2008). https://doi.org/10.30492/IJCCE.2008.6995

    Article  Google Scholar 

  25. Sankar, M.; Pushpa, B.V.; Prasanna, B.M.R.; Do, Y.: Influence of size and location of a thin baffle on natural convection in a vertical annular enclosure. J. Appl. Fluid Mech. 9, 2671–2684 (2016)

    Article  Google Scholar 

  26. Selimefendigil, F.; Öztop, H.F.: Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid. Phys. A Stat. Mech. Appl. 540, 123004 (2020). https://doi.org/10.1016/j.physa.2019.123004

    Article  MathSciNet  MATH  Google Scholar 

  27. Muhammad, N.; Nadeem, S.; Khan, U.; Sherif, E.M.; Issakhov, A.: Insight into the significance of Richardson number on two-phase flow of ethylene glycol-silver nanofluid due to Cattaneo–Christov heat flux. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.2011470

    Article  Google Scholar 

  28. Zhang, J.; Wang, F.; Nadeemd, S.; Sun, M.: Simulation of linear and nonlinear advection–diffusion problems by the direct radial basis function collocation method. Int. Commun. Heat Mass Transf. 130, 105775 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105775

    Article  Google Scholar 

  29. Khan, A.U.; Ullah, N.; Al-Zubaidic, A.; Nadeem, S.: Finite element analysis for CuO/water nanofluid in a partially adiabatic enclosure: inclined Lorentz forces and porous medium resistance. Alex. Eng. J. 61, 6477–6488 (2020). https://doi.org/10.1016/j.aej.2021.12.007

    Article  Google Scholar 

  30. Nadeem, S.; Fuzhang, W.; Alharbi, F.M.; Sajid, F.; Abbas, N.; El-Shafay, A.S.; Al-Mubaddel, F.S.: Numerical computations for Buongiorno nano fluid model on the boundary layer flow of viscoelastic fluid towards a nonlinear stretching sheet. Alex. Eng. J. 61, 1769–1778 (2020). https://doi.org/10.1016/j.aej.2021.11.013

    Article  Google Scholar 

  31. Storn, R.; Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  32. Covic, N.; Lacevic, B.: Wingsuit flying search—a novel global optimization algorithm. IEEE Access 8, 53883–53900 (2020). https://doi.org/10.1109/ACCESS.2020.2981196

    Article  Google Scholar 

  33. Bever Micheal, M.B.: Encyclopedia of Materials Science and Engineering. Pergamon Press, Oxford (1986)

    Google Scholar 

  34. Holman, J.P.: Experimental Methods for Engineers, 8th edn., pp. 63–71. McGraw-Hill, New York (2012)

    Google Scholar 

  35. Roshani, G.H.; Feghhi, S.A.H.; Mahmoudi-Aznaveh, A.; Nazemi, E.; Adineh-Vand, A.: Precise volume fraction prediction in oil–water–gas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector. Measurement 51, 34–41 (2014). https://doi.org/10.1016/j.measurement.2014.01.030

    Article  Google Scholar 

  36. Roshani, G.H.; Nazemi, E.; Roshani, M.M.: Flow regime independent volume fraction estimation in three-phase flows using dual-energy broad beam technique and artificial neural network. Neural Comput. Appl. 28, 1265–1274 (2017). https://doi.org/10.1007/s00521-016-2784-8

    Article  Google Scholar 

  37. Roshani, G.; Hanus, R.; Khazaei, A.; Zych, M.; Nazemi, E.; Mosorov, V.: Density and velocity determination for single-phase flow based on radiotracer technique and neural networks. Flow Meas. Instrum. 61, 9–14 (2018). https://doi.org/10.1016/j.flowmeasinst.2018.03.006

    Article  Google Scholar 

  38. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E.: Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas–oil–water three phase flows. Measurement 168, 108427 (2021). https://doi.org/10.1016/j.measurement.2020.108427

    Article  Google Scholar 

  39. Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E.: Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 75, 101804 (2020). https://doi.org/10.1016/j.flowmeasinst.2020.101804

    Article  Google Scholar 

  40. Roshani, M.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.-N.; Nazemi, E.: X-ray tube with artificial neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radiat. Isot. 164, 109255 (2020). https://doi.org/10.1016/j.apradiso.2020.109255

    Article  Google Scholar 

  41. Roshani, M.; Phan, G.; Faraj, R.H.; Phan, N.-H.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E.: Proposing a gamma radiation based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Nucl. Eng. Technol. 53, 1277–1283 (2021). https://doi.org/10.1016/j.net.2020.09.015

    Article  Google Scholar 

  42. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Eftekhari Zadeh, E.; Fatehi, A.: Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy 41, 7438–7444 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.098

    Article  Google Scholar 

  43. Roshani, G.; Nazemi, E.: Intelligent densitometry of petroleum products in stratified regime of two phase flows using gamma ray and neural network. Flow Meas. Instrum. 58, 6–11 (2017). https://doi.org/10.1016/j.flowmeasinst.2017.09.007

    Article  Google Scholar 

  44. Roshani, G.; Nazemi, E.; Roshani, M.: Intelligent recognition of gas–oil–water three-phase flow regime and determination of volume fraction using radial basis function. Flow Meas. Instrum. 54, 39–45 (2017). https://doi.org/10.1016/j.flowmeasinst.2016.10.001

    Article  Google Scholar 

  45. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E.: Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 168, 108474 (2021). https://doi.org/10.1016/j.measurement.2020.108474

    Article  Google Scholar 

  46. Halton, J.H.: Algorithm 247: Radical-inverse quasi-random point sequence. Commun. ACM 7, 701–702 (1964). https://doi.org/10.1145/355588.365104

    Article  Google Scholar 

  47. Sarbazfard, S.; Jafarian, A.: A hybrid algorithm based on firefly algorithm and differential evolution for global optimization. Int. J. Adv. Comput. Sci. Appl. 7, 95–106 (2016). https://doi.org/10.14569/IJACSA.2016.070612

    Article  Google Scholar 

  48. Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M.S.; Rosendahl, L.A.: Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies. Heat Mass Transf. 54, 291–304 (2018). https://doi.org/10.1007/S00231-017-2103-7

    Article  Google Scholar 

  49. Khalaf, B.S.; Muhammad, A.K.; Fenjan, R.M.: Experimental and numerical investigation of heat transfer enhancement using circular perforated fins. IOP Conf. Ser. Mater. Sci. Eng. 870, 1–12 (2020). https://doi.org/10.1088/1757-899X/870/1/012168/meta

    Article  Google Scholar 

  50. Collins, M.; Tasnim, S.; Wright, J.: Numerical analysis of convective heat transfer in fenestration with between-the-glass louvered shades. Build. Environ. 44, 2185–2192 (2009). https://doi.org/10.1016/j.buildenv.2009.03.017

    Article  MATH  Google Scholar 

  51. Ye, P.: Effect of venetian blinds on overall heat transfer through window systems: a finite element numerical solution. M.Sc. thesis of the Mechanical Engineering Department, Queen's University, Kingston (1997)

  52. Lee, Y.; Korpela, S.A.: Multicellular natural convection in a vertical slot. J. Fluid Mech. 126, 91–121 (1983). https://doi.org/10.1017/S0022112083000063

    Article  MATH  Google Scholar 

  53. Wright, J.L.; Sullivan, H.F.: A two-dimensional numerical model for natural convection in a vertical rectangular window cavity. ASHRAE Trans. 100, 193–206 (1994)

    Google Scholar 

  54. Pankaj, S.; Santosh, B.; Kishor, K.; Sarang, J.: Experimental investigation of heat transfer by natural convection with perforated pin fin array. Procedia Manuf. 20, 311–317 (2018). https://doi.org/10.1016/j.promfg.2018.02.046

    Article  Google Scholar 

  55. Mahmud, A.M.; Ibrahim, T.K.; Jasim, R.R.: Determination of the temperature distribution the perforated fins under natural convection. Tikrit J. Eng. Sci. 15, 63–78 (2008)

    Article  Google Scholar 

  56. Mąkinia, J.; Zaborowska, E.: Mathematical Modelling and Computer Simulation of Activated Sludge Systems. IWA Publishing, London (2020)

    Book  Google Scholar 

  57. Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  58. Rizk-Allah, R.M.; Zaki, E.M.; El-Sawy, A.A.: Hybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems. Appl. Math. Comput. 224, 473–483 (2013). https://doi.org/10.1016/j.amc.2013.07.092

    Article  MathSciNet  MATH  Google Scholar 

  59. Doğan, B.; Olmez, T.: A new metaheuristic for numerical function optimization: vortex search algorithm. Inf. Sci. 293, 125–145 (2015). https://doi.org/10.1016/j.ins.2014.08.053

    Article  Google Scholar 

  60. Nenavath, H.; Jatoth, R.K.: Hybrid SCA–TLBO: a novel optimization algorithm for global optimization and visual tracking. Neural Comput. Appl. 31, 5497–5526 (2019). https://doi.org/10.1007/s00521-018-3376-6

    Article  Google Scholar 

  61. Yang, J.; Zhang, Y.; Wang, Z.; Todo, Y.; Gao, S.: Wingsuit flying search enhanced by spherical evolution. In: Pan, L.; Pang, S.; Song, T.; Gong, F. (Eds.) Bio-inspired Computing: Theories and Applications. BIC-TA 2020. Communications in Computer and Information Science, Vol. 1363. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1354-8_1

    Chapter  Google Scholar 

  62. Eberhart, R.C.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, New York, pp. 39–43 (1995). https://doi.org/10.1109/MHS.1995.494215

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Veysi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, A., Veysi, F. A Combinatorial Approach of the Differential Evolution and Wingsuit Flying Search to Optimize the Free Convection in an Enclosure with Interior Perforated Louvers. Arab J Sci Eng 48, 3157–3180 (2023). https://doi.org/10.1007/s13369-022-07105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07105-9

Keywords

Navigation