Skip to main content
Log in

Modeling of Laminar Buoyancy Convection in a Square Cavity Containing an Obstacle

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The problem of free convection flow and heat transfer of a fluid inside a square cavity having adiabatic obstacle positioned in the center of the cavity has been investigated numerically using a penalty finite element method. Calculations have been made for Rayleigh numbers ranging from \(10^2\) to \(10^7\) for an obstacle of aspect ratios \(\hbox {AR}=0,0.4,0.5,0.6\). Nusselt number results are presented for Prandtl number of 0.71 (assuming the cavity is filled with air). Streamline and isotherm contours are also presented. The obtained results demonstrate the effects of pertinent parameters on the fluid flow, thermal fields and heat transfer inside the cavity. The results show that the heat transfer rates generally increase with the shrink of the obstacle size and with the increase of Rayleigh number. Excellent agreement is obtained with previous results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barakos, G., Mitsoulis, E., Assimacopoulos, D.: Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids 18, 695–719 (1994)

    Article  MATH  Google Scholar 

  2. Basak, T., Ayappa, K.G.: Influence of internal convection during microwave thawing of cylinders. AIChE J. 47, 835–850 (2001)

    Article  Google Scholar 

  3. Basaka, T., Royb, S., Thirumalesha, Ch.: Finite element analysis of natural convection in a triangular enclosure: effects of various thermal boundary conditions. Chem. Eng. Sci. 62, 2623–2640 (2007)

    Article  Google Scholar 

  4. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  5. Bhave, P., Narasimhan, A., Rees, D.A.S.: Natural convection heat transfer enhancement using adiabatic block: optimal block size and Prandtl number effect. Int. J. Heat Mass Transf. 49, 3807–3818 (2006)

    Article  MATH  Google Scholar 

  6. Bhoite, M.T., Narasimham, G.S.L., Murthy, M.K.: Mixed convection in a shallow enclosure with a series of heat generating components. Int. J. Therm. Sci. 44, 125–135 (2005)

    Article  Google Scholar 

  7. Buscaglia, G.C., Dari, E.A.: Implementation of the Lagrange-Galerkin method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 15, 23–36 (1992)

    Article  MATH  Google Scholar 

  8. Chenoweth, D.R., Paolucci, S.: Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J. Fluid Mech. 169, 173–210 (1986)

    Article  MATH  Google Scholar 

  9. Das, M.K., Reddy, K.S.K.: Conjugate natural convection heat transfer in an inclined square cavity containing a conducting block. Int. J. Heat Mass Transf. 49, 4987–5000 (2006)

    Article  MATH  Google Scholar 

  10. De Vahl Davis, G.: Laminar natural convection in an enclosed rectangular cavity. Int. J. Heat Mass Transf. 11, 1675–1693 (1968)

    Article  Google Scholar 

  11. De Vahl Davis, G.: Natural convection of air in a square cavity: a benchmark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  12. Fusegi, T., Hyun, J.M., Kuwahara, K., Farouk, B.: A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int. J. Heat Mass Transf. 34, 1543–1557 (1991)

    Article  Google Scholar 

  13. Gebhart, B.: Buoyancy-induced fluid motion characteristics of applications in technology: The 1979 Freeman Scholar Lecture. ASME Trans. J. Fluid Eng. 101, 5–28 (1979)

    Article  Google Scholar 

  14. Ha, M.Y., Jung, M.J., Kim, Y.S.: Numerical study on transient heat transfer and fluid flow of natural convection in an enclosure with a heat-generating conducting body. Numer. Heat Transf. A 35, 415–433 (1999)

    Article  Google Scholar 

  15. Lee, J.R., Ha, M.Y.: Numerical simulation of natural convection in a horizontal enclosure with a heat-generating conducting body. Int. J. Heat Mass Transf. 49, 2684–2702 (2006)

    Article  MATH  Google Scholar 

  16. Liu, G.R., Quek, S.S.: The Finite Element Method: A Practical Course. Butterworth-Heinemann, New York (2003)

    MATH  Google Scholar 

  17. Mousa, M.M.: Finite element investigation of stationary natural convection of light and heavy water in a vessel containing heated rods. Z. Naturforsch. A 67a(6/7), 421–427 (2012)

    Google Scholar 

  18. Nassehi, V., Parvazinia, M.: Finite Element Method in Engineering. Imperial College Press, London (2010)

    MATH  Google Scholar 

  19. Ostrach, S.: Natural convection in enclosures. ASME Trans. J. Heat Transf. 110, 1175–1190 (1988)

    Article  Google Scholar 

  20. Parvin, S., Nasrin, R.: Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle. Nonlinear Anal. 16(1), 89–99 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Parvin, S., Hossain, N.F.: Finite element simulation of MHD combined convection through a triangular wavy channel. Int. Commun. Heat Mass Transf. 39, 811–817 (2012)

    Article  Google Scholar 

  22. Prasopchingchana, U., Pirompugd, W., Laipradit, P., Boonlong, K.: Numerical study of natural convection of air in an inclined square enclosure. Int. J. Mater. Mech. Manuf. 1, 131–135 (2013)

    Google Scholar 

  23. Rahman, M.M., Alim, M.A., Mamun, M.A.H.: Finite element analysis of mixed convection in a rectangular cavity with a heat-conducting horizontal circular cylinder. Nonlinear Anal. 14(2), 217–247 (2009)

    MATH  Google Scholar 

  24. Raji, A., Hasnaoui, M., Nami, M., Slimani, K., Ouazzani, M.T.: Effect of the subdivision of an obstacle on the natural convection heat transfer in a square cavity. Comput. Fluids 68, 1–15 (2012)

    Article  Google Scholar 

  25. Reddy, J.N.: An Introduction to the Finite Element Method. McGraw-Hill, New York (1993)

    Google Scholar 

  26. Roy, S., Basak, T.: Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s). Int. J. Eng. Sci. 43, 668–680 (2005)

    Article  MATH  Google Scholar 

  27. Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using finite element technique. Comput. Fluids 1, 73–89 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vierendeels, J., Merci, B., Dick, E.: Benchmark solutions for the natural convective heat transfer problem in a square cavity with large horizontal temperature differences. Int. J. Numer. Methods Heat Fluid Flow 13, 1057–1078 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work is supported by PSRC (A Project Funded by the Basic Science Research Center) of Majmaah University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mousa.

Additional information

Communicated by Syakila Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousa, M.M. Modeling of Laminar Buoyancy Convection in a Square Cavity Containing an Obstacle. Bull. Malays. Math. Sci. Soc. 39, 483–498 (2016). https://doi.org/10.1007/s40840-015-0188-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0188-z

Keywords

Mathematics Subject Classification

Navigation